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This course

An ‘advanced introduction’ to macroeconomics

Core topics in macro — long run growth, business cycles,
unemployment, inflation, stabilization policy etc

But greater focus on formal economic models and analytical
methods, especially dynamics

Goal is to build intuition and to learn key macro tools, concepts
and to make better sense of on-going macro policy debates

A course for anyone who wants to be a professional economist,
whether in the public sector, private sector, or academia
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Course material

• No required text, but a useful supplement

– David Romer (2012): Advanced Macroeconomics. 4th Edition.

• Various journal articles and working papers, posted to the LMS

• Slides for each lecture, posted to the LMS
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Assessment

Task Due date Weight

Problem set #1 Wednesday March 27 5%
Problem set #2 Wednesday May 1 5%
Problem set #3 Wednesday May 22 5%

Group presentations beginning Monday April 29 15%

Final exam exam block 70%
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Group presentations

• In class 30-minute group presentation of research paper

– list of papers posted to LMS, mix of classics and hot topics
– 10 groups, 4–5 students per group
– form group, choose paper (first-come, first-served)
– schedule meeting with me to discuss preparation

• Presentations in second half of the semester, one per class

• One multiple choice question per presentation on final exam
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Tutorials

Tutorial times

Wednesdays 15:00�16:00 The Spot 2015

Fridays 10:00�11:00 Alan Gilbert 101

Fridays 15:15�16:15 FBE 211 (Theatre 4)

Tutors: Daniel Minutillo and Daniel Tiong.

Tutorials begin next week. Sign up for tutorials asap.
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Lecture schedule

• First half: essentially ‘frictionless’ macro

– growth theory and dynamic optimization, lectures 1–8

including dynamical systems tools, introduction to Matlab etc

– real business cycles, lectures 9–12

• Problem sets #1 and #2 based on first half of the course
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Lecture schedule

• Second half: macroeconomics with frictions, macro policy

– monetary economics, lectures 13–18

nominal rigidities, new Keynesian models, monetary policy

– unemployment, lectures 19–21

labor market flows and unemployment fluctuations

– financial market frictions, lectures 22–24

bank runs, financial crises, endogenous risk

• Problem set #3 based on second half of the course

• Group presentations more in the spirit of second half of course
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Rest of this class

Review of discrete-time Solow-Swan growth model
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Solow-Swan

• Benchmark model of economic growth, capital accumulation

• Simple setting: no government, closed economy, full employment

• Point of departure vs. earlier Harrod-Domar growth models:
aggregate production function with smooth substitution between
capital and labor

• Key conclusion: sustained growth only through productivity
growth, not capital accumulation
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Setup
• Discrete time t = 0, 1, 2, . . .

• Output Yt is produced with physical capital Kt and labor Lt

according to the aggregate production function

Yt = F (Kt, AtLt)

with labor-augmenting productivity At

• Physical capital depreciates at rate �

Kt+1 = (1� �)Kt + It, 0 < � < 1, K0 > 0

• For simplicity, productivity At and labor Lt grow exogenously

At+1 = (1 + g)At, 1 + g > 0, A0 > 0

Lt+1 = (1 + n)Lt, 1 + n > 0, L0 > 0
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Y = F (K,L)

• Each input has positive marginal product

FK(K, L) > 0, FL(K, L) > 0

• Each input suffers from diminishing returns

FKK(K, L) < 0, FLL(K, L) < 0

• Constant returns to scale, i.e., if both inputs scaled by common
factor c > 0 then

F (cK, cL) = cF (K, L)

• Some analysis is simplified by assuming the ‘Inada conditions’

FK(0, L) = FL(K, 0) = 1,

FK(1, L) = FL(K,1) = 0

and that both inputs are essential, i.e., F (0, L) = F (K, 0) = 0
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Savings and investment

• National savings an exogenous fraction of output

St = sYt, 0 < s < 1

(key is that savings behavior is exogenous, not that it is constant)

• Hence in a closed economy investment is simply

It = St = sYt = sF (Kt, AtLt)

• Putting all this together

Kt+1 = sF (Kt, AtLt) + (1� �)Kt

• Nonlinear difference equation in Kt. Starting from initial K0 > 0,
determines Kt sequence given AtLt sequence and other parameters
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Intensive form

• Detrend model by writing in terms of efficiency units

y ⌘ Y

AL
, k ⌘ K

AL
, ... etc

• Using constant returns to scale

y =
Y

AL
=

F (K, AL)

AL
= F (

K

AL
, 1) = F (k, 1) ⌘ f(k)

• Intensive version of the production function

y = f(k), f 0(k) > 0, f 00(k) < 0,

and with Inada conditions

f 0(0) = 1, f 0(1) = 0
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Capital accumulation

• Then have an autonomous difference equation in kt

kt+1 =
s

1 + g + n + gn
f(kt) +

1� �

1 + g + n + gn
kt ⌘  (kt)

starting from initial k0 > 0

• We need to learn how to analyze difference equations like this
(and the analogous differential equations in continuous time)

• We will analyze qualitative dynamics using a phase diagram

• We will analyze quantitative dynamics using local approximations
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Steady state
• Steady state capital per effective worker k⇤ where kt+1 = kt, i.e.,

solves the ‘fixed-point’ problem

k⇤ =  (k⇤)

• Equivalently, k⇤ found where investment per effective worker
equals effective depreciation

sf(k⇤) = (� + g + n + gn)k⇤

• Determines k⇤ in terms of model parameters s, �, g, n, f(·)

• Then output per effective worker

y⇤ = f(k⇤)

and consumption per effective worker

c⇤ = (1� s)f(k⇤)
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Solow diagram
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Qualitative dynamics
• Capital per effective worker kt is rising when kt level is low

kt+1 > kt , sf(kt) > (� + g + n + gn)kt

, kt < k⇤

• Capital per effective worker kt is falling when kt level is high

kt+1 < kt , sf(kt) < (� + g + n + gn)kt

, kt > k⇤

• Converges kt ! k⇤, steady state k⇤ is stable (for all k0 > 0).
Provides natural notion of ‘long run’ capital per effective worker
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Phase diagram
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Linear difference equation

• To understand these stability properties more systematically, let’s
begin with simple scalar linear difference equations, such as

xt+1 = axt + b, x0 given

• Steady state if a 6= 1

x⇤ =
b

1� a

• Can write in deviations from steady state

(xt+1 � x⇤) = a(xt � x⇤)
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Linear difference equation
• Stability properties determined by magnitude of coefficient a

• If a 6= 1

xt = x⇤ + at(x0 � x⇤), t = 0, 1, . . .

If |a| < 1 then xt converges to x⇤ as t ! 1 (quickly if |a| small).
Monotone convergence if 0 < a < 1, dampened cycles if �1 < a < 0

• If a = 1, no steady state and simply

xt = tb + x0

• What if a = �1? Steady state at x⇤ = b/2, but limit-cycle around
x⇤ except if by chance x0 = b/2 too.

• In short steady state stable if |a| < 1 and unstable otherwise.
In linear system, local stability implies global stability
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Nonlinear difference equation

• Consider scalar nonlinear difference equation

xt+1 =  (xt), x0 given

• Steady states determined by fixed point problem

x⇤ =  (x⇤)

May be many, or none

• Stability local to a steady state depends on magnitude of  0(x⇤)
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Local stability

• To see this, linearize around some arbitrary point z

xt+1 =  (xt) ⇡  (z) +  0(z)(xt � z)

In particular, take z = x⇤, hence  (z) = x⇤ and

xt+1 ⇡ x⇤ +  0(x⇤)(xt � x⇤)

• In deviations form and treating as exact

xt+1 � x⇤ =  0(x⇤)(xt � x⇤)

Linear difference equation with coefficient a =  0(x⇤)

• Hence a given steady state x⇤ is locally stable iff | 0(x⇤)| < 1. But
may not be globally stable.
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Speed of convergence
• Magnitude  0(x⇤) = a governs speed of convergence. Suppose

xt = x⇤ + at(x0 � x⇤), 0 < a < 1

• How long does it take to close half the x0 � x⇤ gap?

t =
log(1/2)

log(a)

(i.e., the ‘half-life’ of the geometric decay in x0 � x⇤)

• Quick convergence when a is low (close to zero), i.e., short half-life

• Slow convergence when a is high (close to one), i.e., long half-life

• In Solow-Swan model, a =  0(k⇤) determined by parameters
s, �, g, n, . . . For what parameter values is a low? high?
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Next class

• Solow-Swan model in continuous time

– makes for simpler calculations
– greater transparency in calibration

• Implications and applications

– balanced growth path
– long-run effects of changes in savings rate
– golden rule
– speed of convergence
– examples
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