Unbundling Labor

Chris Edmond University of Melbourne

Simon Mongey Minneapolis Fed and University of Chicago

August 2022

The views herein are those of the authors and not the Federal Reserve System

This Paper

- Has technological change made jobs more or less similar?
- What are the implications for wage inequality?
- When does such technological change arise?

1970 - Cafe

2020 - Starbucks

Today

1. Facts

A. Heterogeneity in skill requirements across occupations

 \downarrow Low skill jobs $\ ,\ \uparrow$ High skill jobs

B. Inequality in wages *within* occupations

 \downarrow Low skill jobs $\ ,\ \uparrow$ High skill jobs

2. Theory

- Technological change consistent with A. causes B.
- Nests three standard frameworks that are silent on links b/w A. and B.
- Endogenize A. as appropriate technology choice
- 3. Additional Facts (time permitting)
 - Declining *experience premium* in low skill jobs
 - Declining overtime premium / part-time penalty in low skill jobs
 - Increasing *occupation switching* in low skill jobs

Fact A. - Technology

High skill jobs have become more different Low skill jobs have become more similar

Approach

- 1. O*NET data on 250+ skills and J occupations. Split: 2003-09, 2010-18
- 2. Reduce to $4 \times J$ matrix of skills $\mathbf{A}_t = \begin{bmatrix} \mathbf{a}_{1t}, \dots, \mathbf{a}_{Jt} \end{bmatrix}$ (Lise Postel-Vinay, 2020)
- 3. Distance between occupations (Gathmann Schönberg, 2010)

Skill 1

$$\mathbf{a}_{jt} / ||\mathbf{a}_{jt}||$$

 $\mathbf{a}_{j't} / ||\mathbf{a}_{j't}||$
Skill 2

4. Compare the distribution of these distances $\theta(j, j')$ across periods

[▶] Details - Dimension Reduction

Fact A. - Technology

High skill jobs have become more different Low skill jobs have become more similar

Median distance between low skill occupations down ≈ 5 degrees

Fact B. - Wages

Wages in high skill jobs have become more different Wages in low skill jobs have become more similar

Approach

- Log annual earnings from the CPS $\log y_{it}$
- Residuals after controlling for observables e_{it}

 $Year_t, NAICS1_{it}, Ed_{it}, Race_{it}, Sex_{it}, FirmSize_{it}, Exp_{it}, Exp_{it}^2, Hours_{it}$

- Estimate in 15 year windows. Separately for low and high skill occupations
- Decompose $var(e_{it})$ into within- and between-occupation components

Fact B. - Wages

Wages in high skill jobs have become more different Wages in low skill jobs have become more similar

Variance of residuals. Red = High wage occupations, Blue = Low wage occupations

Robust across {All,Male,Female} × {Fix occupations in 1980, 2010}

Theory

Overview

- Builds on Rosen (1983), Heckman Scheinkman (1987)
- Workers supply multiple skills, heterogeneity in comparative advantage
- Tasks/occupations demand multiple skills
- Workers must supply skills to single task/occupation
- "More diversity in skill supply than skill demand"

Model

- Static competitive equilibrium model
- Two skills, workers $i \in [0, 1]$ endowed with $x(i), y(i) \sim H(x, y)$
- Two occupations j = 1, 2 with different skill intensities
- Competitive equilibrium wages

$$w_j(i) = \lambda_{jX} x(i) + \lambda_{jY} y(i) \quad \rightarrow \quad var\Big(\log w_j(i)\Big|j\Big)$$

- Within occupation inequality determined by two forces
 - 1. Distribution of skills conditional on selection
 - **2.** Gradient of within-occupation skill prices $\{\lambda_{jX}, \lambda_{jY}\}$

Production

- Final good

 $U(C_1, C_2)$

- Production of task/occupation j

$$C_{j} = F_{j}\left(X_{j}, Y_{j}\right) = \left[\alpha_{j}X_{j}^{\sigma} + (1 - \alpha_{j})Y_{j}^{\sigma}\right]^{\frac{1}{\sigma}}, \quad \sigma < 1$$
$$X_{j} = \int x(i)\phi_{j}(i) \, di, \qquad Y_{j} = \int y(i)\phi_{j}(i) \, di, \qquad \phi_{j}(i) \in \{0, 1\}$$

Production

- Final good

 $U(C_1, C_2)$

- Production of task/occupation j

$$C_{j} = F_{j}\left(X_{j}, Y_{j}\right) = \left[\alpha_{j}X_{j}^{\sigma} + (1 - \alpha_{j})Y_{j}^{\sigma}\right]^{\frac{1}{\sigma}}, \quad \sigma < 1$$
$$X_{j} = \int x(i)\phi_{j}(i) \, di, \qquad Y_{j} = \int y(i)\phi_{j}(i) \, di, \qquad \phi_{j}(i) \in \{0, 1\}$$

BUNDLED - Worker i must allocate x(i), y(i) to the same task j

Efficient Allocation – Relaxed Problem

$$\max_{\phi_{1x}(i)\in\{0,1\},\phi_{1y}(i)\in\{0,1\}} U\Big(F_1(X_1,Y_1),F_2(X_2,Y_2)\Big)$$

subject to

with shadow prices $\lambda_{jX}, \lambda_{jY}$

$$X_{1} = \int \phi_{1x}(i) x(i) di \longrightarrow \lambda_{1X} = U_{1}F_{1X}$$

$$X_{2} = \int \left[1 - \phi_{1x}(i)\right] x(i) di \longrightarrow \lambda_{2X} = U_{2}F_{2X}$$

$$Y_{1} = \int \phi_{1y}(i) y(i) di \longrightarrow \lambda_{1Y} = U_{1}F_{1Y}$$

$$Y_{2} = \int \left[1 - \phi_{1y}(i)\right] y(i) di \longrightarrow \lambda_{2Y} = U_{2}F_{2Y}$$

Efficient Allocation – Relaxed Problem

$$\max_{\phi_{1x}(i)\in\{0,1\},\phi_{1y}(i)\in\{0,1\}} U\Big(F_1(X_1,Y_1),F_2(X_2,Y_2)\Big)$$

subject to

with shadow prices $\lambda_{jX}, \lambda_{jY}$

$$X_{1} = \int \phi_{1x}(i) x(i) di \longrightarrow \lambda_{1X} = U_{1}F_{1X}$$

$$X_{2} = \int \left[1 - \phi_{1x}(i)\right] x(i) di \longrightarrow \lambda_{2X} = U_{2}F_{2X}$$

$$Y_{1} = \int \phi_{1y}(i) y(i) di \longrightarrow \lambda_{1Y} = U_{1}F_{1Y}$$

$$Y_{2} = \int \left[1 - \phi_{1y}(i)\right] y(i) di \longrightarrow \lambda_{2Y} = U_{2}F_{2Y}$$

and person-by-person bundling constraints

 $\phi_{1x}(i) = \phi_{1y}(i) \quad \text{for all} \quad i \in [0, 1]$

- Result. Can replace continuum of person-by-person constraints with single aggregate constraint
- Given X_1 what is minimum and maximum Y_1 bundled along with it?

Aggregate bundling constraint: $Y_1 \in \left[\underline{B}(X_1), \overline{B}(X_1)\right]$

- Result. Can replace continuum of person-by-person constraints with single aggregate constraint
- Given X_1 what is minimum and maximum Y_1 bundled along with it?

Aggregate bundling constraint: $Y_1 \in \left[\underline{B}(X_1), \overline{B}(X_1)\right]$

- Construct X_1 using workers with highest x(i)/y(i) first

$$X_1 = \int_0^{i^*} x(i) \, di, \qquad \underline{B}(X_1) = \int_0^{i^*} y(i) \, di$$

- Result. Can replace continuum of person-by-person constraints with single aggregate constraint
- Given X_1 what is minimum and maximum Y_1 bundled along with it?

Aggregate bundling constraint: $Y_1 \in \left[\underline{B}(X_1), \overline{B}(X_1)\right]$

- Construct X_1 using workers with highest x(i)/y(i) first

$$X_1 = \int_0^{i^*} x(i) \, di, \qquad \underline{B}(X_1) = \int_0^{i^*} y(i) \, di$$

- Result. If the skill distribution H(x, y) has no mass points, then
 - **1.** \underline{B} is strictly increasing, strictly *convex*
 - **2.** \overline{B} is strictly increasing, strictly *concave*
 - **3.** Continuously differentiable, with derivative $\underline{B}'(X_1) = y(i^*) / x(i^*)$

Feasible allocations must satisfy aggregate bundling constraint $Y_1 \in [\underline{B}(X_1), \overline{B}(X_1)]$. Determined by joint distribution of skills H(x, y), independent of technology.

Feasible allocations must satisfy aggregate bundling constraint $Y_1 \in [\underline{B}(X_1), \overline{B}(X_1)]$. Determined by joint distribution of skills H(x, y), independent of technology.

Independent skills $H(x, y) = H_X(x)H_Y(y)$.

Feasible allocations must satisfy aggregate bundling constraint $Y_1 \in [\underline{B}(X_1), \overline{B}(X_1)]$. Determined by joint distribution of skills H(x, y), independent of technology.

Positively correlated skills H(x, y), shrinks feasible set.

Feasible allocations must satisfy aggregate bundling constraint $Y_1 \in [\underline{B}(X_1), \overline{B}(X_1)]$. Determined by joint distribution of skills H(x, y), independent of technology.

Negatively correlated skills H(x, y), expands feasible set.

Efficient Allocation

$$\max_{X_1,Y_1} U\Big(F_1\Big(X_1,Y_1\Big),F_2\Big(\overline{X}-X_1,\overline{Y}-Y_1\Big)\Big)$$

subject to aggregate bundling constraint

Efficient Allocation

$$\max_{X_1,Y_1} U\left(F_1\left(X_1,Y_1\right),F_2\left(\overline{X}-X_1,\overline{Y}-Y_1\right)\right)$$

subject to aggregate bundling constraint

$$\underbrace{Y_1 \ge \underline{B}(X_1)}_{\text{Multiplier: } \underline{\mu}}$$

- First order conditions

$$X_1: \quad \lambda_{1X} = \lambda_{2X} + \underline{\mu} \underline{B}'(X_1)$$

$$Y_1: \quad \lambda_{1Y} = \lambda_{2Y} - \mu$$

- Multiplier μ does not appear in original problem, but is key to skill prices

Unbundled Allocation

'Contract curve' equates marginal rates of technical substitution: $F_{1X}/F_{1Y} = F_{2X}/F_{2Y}$. Unbundled allocation (*) equates U_1/U_2 to marginal rate of transformation F_{2k}/F_{1k} .

Bundled Allocation

Bundling constraint binds. Cannot 'break open' workers to get at underlying skill content. $U_1\Big[F_{1X} + \underline{B}'(X_1)F_{1Y}\Big] = U_2\Big[F_{2X} + \underline{B}'(X_1)F_{2Y}\Big], \qquad Y_1 = \underline{B}(X_1)$

Wages

 $w_1(i) = \lambda_{1X} x(i) + \lambda_{1Y} y(i)$

Wages

Wages

- When is the equilibrium bundled or unbundled?
- Definition symmetric economy. Weight α on primary skill, $\overline{X} = \overline{Y}$, no other restrictions on H(x, y)
- Result. For each symmetric economy unique factor intensity α^* such that:

(i) The equilibrium is unbundled if and only if $\alpha \leq \alpha^*$.

- (ii) If unbundled, then $X'(\alpha) > 0$, and $\mu(\alpha) = 0$.
- (iii) If bundled, then $X(\alpha) = X(\alpha^*)$ and $\mu(\alpha) > 0$ with $\mu'(\alpha) > 0$.
- What implications does this have for wages?
- Result. For each occupation j there is a unique factor intensity $\alpha_j^{**} \ge \alpha^*$, that depends on moments of H(x, y), such that $\uparrow \alpha$ increases the variance of log wages in occupation j if and only if $\alpha > \alpha_j^{**}$

 \blacktriangleright Details - Formulas for α^* and α^*

Skill Bias and Inequality

Varying $\alpha \in \{0.50, \dots, 0.75\}$. As occupations become more different, bundling constraint binds and *primary* skill prices increase relative to *secondary* skill prices.

Skill Bias and Inequality

Varying $\alpha \in \{0.50, \dots, 0.75\}$. As occupations become more different, bundling constraint binds and *primary* skill prices increase relative to *secondary* skill prices.

Low Skill Occupations in the US: 1970 vs 2020

\uparrow Skill bias \rightarrow Bundled / Sorted Equilibrium \rightarrow \uparrow Inequality

 $\Downarrow Skill \ bias \ \rightarrow \ Unbundled \ / \ Unsorted \ Equilibrium \ \rightarrow \ \Downarrow \ Inequality$

Three Special Cases

Katz-Murphy,	Roy,	Lindenlaub
	\checkmark	\frown
$\theta \rightarrow 1$	$\alpha_j \rightarrow 1$	$J \rightarrow \infty$

Three Special Cases

$$\underbrace{Katz-Murphy}_{\theta \to 1}, \underbrace{Roy}_{\alpha_j \to 1}, \underbrace{Lindenlaub}_{J \to \infty}$$

1. *Katz-Murphy*

$$F_1 = \begin{bmatrix} \alpha_{1L}L^{\sigma} & + \alpha_{1H}H^{\sigma} \end{bmatrix}^{\frac{1}{\sigma}}, \qquad \boldsymbol{x}(i) \in \left\{ \left(l(i), 0 \right), \left(0, h(i) \right) \right\}$$

- "Complete" skill supply \Rightarrow Always unbundled

- Law of one price holds for each skill

$$w(i) = \lambda_L l(i) + \lambda_H h(i)$$
$$var(\log w(i) | 1) = var(\log w(i))$$

1. Katz-Murphy

Entire set feasible. Equilibrium always unbundled, regardless of technology. Workers not sorted. All workers indifferent. No returns to comparative advantage.

Three Special Cases

$$\underbrace{Katz-Murphy}_{\theta \to 1}, \underbrace{Roy}_{\alpha_j \to 1}, \underbrace{Lindenlaub}_{J \to \infty}$$

2. Roy model

$$F_1 = Z_1 X_1, \qquad X_1 = \int x(i)\phi_1(i) \, di, \qquad x(i) = \exp\left(\boldsymbol{\beta}'_X \boldsymbol{\xi}(i)\right)$$

- Extreme factor bias \Rightarrow Always bundled
- One positive price for each "skill composite"

$$w_1(i) = \lambda_{1X} x(i)$$
$$var\left(\log w(i) \mid 1\right) = var\left(\log x(i) \mid i < i^*\right)$$

2. Roy Model

Equilibrium always bundled. Workers sorted by comparative advantage. Skill prices $\lambda_{1X}/\lambda_{2Y}$ pinned down by relative skills of marginal worker. $w_1(i) = \lambda_{1X}x(i)$

$\textbf{Technology} \rightarrow \textbf{Skill Prices} \rightarrow \textbf{Inequality}$

- Roy model - Returns to individual characteristics $\boldsymbol{\xi}(i)$ are exogenous:

 $\log w_1(i) = \log \lambda_{1X} + \boldsymbol{\beta}'_X \boldsymbol{\xi}(i)$

Skill prices enter only through occupation fixed effect

- Our model - To a first order approximation

$$\log w_1(i) \approx \log \overline{w}_1 + \widetilde{\boldsymbol{\beta}}_1' \boldsymbol{\xi}(i), \qquad \widetilde{\boldsymbol{\beta}}_1 = \widetilde{\lambda}_1 \boldsymbol{\beta}_X + \left(1 - \widetilde{\lambda}_1\right) \boldsymbol{\beta}_Y$$

Returns to individual characteristics $\boldsymbol{\xi}(i)$ are endogenous to skill prices

$$\widetilde{\lambda}_1 = \frac{\lambda_{1X}\overline{x}_1}{\lambda_{1X}\overline{x}_1 + \lambda_{1Y}\overline{y}_1}$$

Shocks re-weight characteristics $\boldsymbol{\xi}(i)$ via changes in skill prices $\lambda_{1X}, \lambda_{1Y}$. Roy model is special case where $\lambda_{1Y} = 0$ always.

Three Special Cases

$$\underbrace{Katz-Murphy}_{\theta \to 1}, \underbrace{Roy}_{\alpha_j \to 1}, \underbrace{Lindenlaub}_{J \to \infty}$$

3. Lindenlaub

$$\int_0^j Y(j') \, dj' = \int_0^j X(j') \, dj' \quad \text{for all } j \in [0, J] \quad \to \quad \underline{\mu}_j$$

- Continuum $\alpha(j) \in [0,1] \Rightarrow 1:1 matching \Rightarrow All workers are marginal$
- Continuum of skill prices

$$w_j(i) = \lambda_X(j)x(i) + \lambda_Y(j)y(i)$$
$$var\Big(\log w(i) \mid j\Big) = 0$$

Endogenous Technology

Endogenous Technology

Under what conditions do these changes in factor intensities emerge endogenously from an expansion in the set of available technologies?

1. Production function

$$F_j = \left[\alpha_j \left(a_{jX} X_j \right)^{\sigma} + (1 - \alpha_j) \left(a_{jY} Y_j \right)^{\sigma} \right]^{1/\sigma}, \qquad \sigma < 1$$

Endogenous Technology

Under what conditions do these changes in factor intensities emerge endogenously from an expansion in the set of available technologies?

1. Production function

$$F_j = \left[\alpha_j \left(a_{jX} X_j \right)^{\sigma} + (1 - \alpha_j) \left(a_{jY} Y_j \right)^{\sigma} \right]^{1/\sigma}, \qquad \sigma < 1$$

2. Technology frontier

$$\left[a_{jX}^{\rho} + a_{jY}^{\rho}\right]^{1/\rho} = \overline{A}_j, \qquad \rho > 1$$

- Problem. Taking skill prices λ_{jX} , λ_{jY} as given, choose a_{jX} , a_{jY} to minimize marginal cost subject to technology frontier.

Available Technologies

Technology frontier $[a_{jX}^{\rho} + a_{jY}^{\rho}]^{1/\rho} = \overline{A}_j$. As $\rho \searrow 1$ can reach more combinations of a_{jX}, a_{jY} for given \overline{A}_j .

- Assumption. To rule out corner solutions:

$$\sigma < \frac{\rho}{1+\rho}$$

- Result. Bundling cutoff α^* is increasing in ρ if and only if $\sigma > 0$.

- Assumption. To rule out corner solutions:

$$\sigma < \frac{\rho}{1+\rho}$$

- Result. Bundling cutoff α^* is increasing in ρ if and only if $\sigma > 0$.
- Application. Now consider reduction from $\rho = \infty$ to $\rho = 1$
 - (i) Short-run equilibrium, $\rho = \infty$, as if exogenous $a_{jX}, a_{jY} = 1$
 - (ii) Long-run equilibrium, $\rho = 1$, endogenous a_{jX}, a_{jY}

- Result

(i) If $\sigma > 0$, skills are *substitutes*, initially unbundled equilibrium becomes endogenously bundled if decrease in cutoff sufficiently large

$$\underline{\alpha_{\rho=1}^*} < \alpha < \alpha_{\rho=\infty}^*$$

bundled in long run

- Result

(i) If $\sigma > 0$, skills are *substitutes*, initially unbundled equilibrium becomes endogenously bundled if decrease in cutoff sufficiently large

(ii) If $\sigma < 0$, skills are *complements*, initially bundled equilibrium becomes endogenously unbundled if increase in cutoff sufficiently large

$$\underbrace{\alpha_{\rho=1}^* > \alpha}_{\rho=\infty} > \alpha_{\rho=\infty}^*$$

unbundled in long run

Case (i) $\sigma > 0$. Bundling Labor

Skills are substitutes.

Case (i) $\sigma > 0$. Bundling Labor

Endogenous technology more biased to primary skill, more "Roy-Like". Bundling constraints tighter. Greater returns to comparative advantage in primary skill. Increasing within-occupation wage inequality.

Skills are substitutes.

Case (ii) $\sigma < 0$. Unbundling Labor

Skills are complements.

Case (ii) $\sigma < 0$. Unbundling Labor

Endogenous technology less biased to primary skill, less "Roy-Like". Bundling constraints slacken. Lower returns to comparative advantage in primary skill. Decreasing within-occupation wage inequality.

Skills are complements.

Additional Facts

▶ Skip to End

1. Occupation Switching

2. Experience Premium

One extra year experience associated with 2 to 3 percent higher wage

$$\log y_{it} = \alpha + \beta_{Exp}^{\tau} Exp_{it} + \beta_{Exp}^{\tau} Exp_{it}^{2} + \beta_{Hours}^{\tau} \log Hours_{it} + \beta_{Size}^{\tau} Size_{it} \dots + \beta_{X}^{\tau} [Year_{t}, Race_{it}, NAICS1_{it}, Ed_{it}, Sex_{it}]$$

3. Hours Premium

(=1): wage independent of hours, (≥ 1) : wage increasing in hours

 $\log y_{it} = \alpha + \beta_{Exp}^{\tau} Exp_{it} + \beta_{Exp}^{\tau} Exp_{it}^{2} + \beta_{Hours}^{\tau} \log Hours_{it} + \beta_{Size}^{\tau} Size_{it} \dots + \beta_{X}^{\tau} [Year_{t}, Race_{it}, NAICS1_{it}, Ed_{it}, Sex_{it}]$

1. More *occupation switching* in low skill jobs

2. Smaller *experience premium* in low skill jobs

3. Smaller overtime premium / part-time penalty in low skill jobs

- 1. More *occupation switching* in low skill jobs
 - Unbundled equilibrium features indeterminate occupational choice
- 2. Smaller *experience premium* in low skill jobs

3. Smaller overtime premium / part-time penalty in low skill jobs

- 1. More *occupation switching* in low skill jobs
 - Unbundled equilibrium features indeterminate occupational choice
- 2. Smaller *experience premium* in low skill jobs
 - Add learning by doing in the direction of occupation skill bias Cavounidis Lang (JPE, 2020)
 - Experience premium \leftrightarrow Inframarginal rents
 - Unbundling labor reduces gradient of primary / secondary skill prices
 - Reduces observed experience premium
- 3. Smaller overtime premium / part-time penalty in low skill jobs

- 1. More *occupation switching* in low skill jobs
 - Unbundled equilibrium features indeterminate occupational choice
- 2. Smaller *experience premium* in low skill jobs
 - Add learning by doing in the direction of occupation skill bias Cavounidis Lang (JPE, 2020)
 - Experience premium \leftrightarrow Inframarginal rents
 - Unbundling labor reduces gradient of primary / secondary skill prices
 - Reduces observed experience premium
- 3. Smaller overtime premium / part-time penalty in low skill jobs
 - Unbundlled equilibrium \leftrightarrow Workers are more "substitutable"

Summary

1. Facts

A. Heterogeneity in skill requirements across occupations

 \downarrow Low skill jobs $\ ,\ \uparrow$ High skill jobs

B. Inequality in wages *within* occupations

 \downarrow Low skill jobs $\ ,\ \uparrow$ High skill jobs

2. Theory

- General equilibrium Rosen (1983), Heckman Scheinkman (1987)
- Technological change consistent with A. causes B.
- Nests three standard frameworks that are silent on links b/w A. and B.
- Endogenize A. as appropriate technology choice (Caselli Coleman 2006)
 - Expand set of available technologies
 - Endogenous unbundling when skills \boldsymbol{X} and \boldsymbol{Y} are substitutes
 - Endogenous bundling when skills \boldsymbol{X} and \boldsymbol{Y} are complements

Appendix

Fact A. - Technology

Input is a $J \times K$ normalized matrix of skill measures **A** from O*NET

1. Apply principal components with $K^* \ll K$

$$\mathbf{A}_{[J \times K]} = \widehat{\mathbf{A}}_{[J \times K^*]} \widehat{\mathbf{P}}_{[K^* \times K]} + \mathbf{U}_{[J \times K]}$$

2. To name skills, rotate principal components s.t. satisfy K^* orthogonality conditions

$$\mathbf{A}_{[J \times K]} = \left(\widehat{\mathbf{A}}_{[J \times K^*]}\Psi\right) \left(\Psi^{-1}\widehat{\mathbf{P}}_{[K^* \times K]}\right) + \mathbf{U}_{[J \times K]} \rightarrow \mathbf{A}^* = \widehat{\mathbf{A}}\Psi$$

 \implies Final skill 1, places a weight of 1 on k = 1, and zero on $k \in \{2, \ldots, K^*\}$

- **3.** Use as K^* 'anchoring' skills those used by Acemoglu Autor (2011)
 - Non-routine cognitive: Analytical "Analyzing data / information"
 - Non-routine cognitive: Interpersonal "Maintaining relationships"
 - Routine cognitive "Importance of repeating the same tasks"
 - Routine manual "Controlling machines and processes"

[▶] Back - Fact A. Technology

Empirics - Details

- All data based on March CPS "last year" questions
- Occupation, Industry Dorn (1990) harmonized cross-walk
 - Drop military
 - Occupation skill = Fraction of workers with high-school or less
 - Occupations sorted on occupation skill
- Use Heathcote, Perri and Violante (2010)
 - Earnings = Wage income + $(2/3) \times$ Self employment income
 - Annual hours = Weeks worked last year \times Usual hours worked per week
 - Wage = Earnings / Annual hours
 - Age 25-65, Wage $>0.5\times$ Federal minimum wage, Hours > One month of 8hr days
- Regression controls for residualized wage:
 - Worker education (3 levels), Industry (1 digit), Experience, Experience² Race, Log hours,
 - Experience = (age max(years in school, 12)) 6

[▶] Back - Wages

Analytics - Details

- Amount of X in occupation 1

$$X(\alpha) = \frac{\alpha^{\frac{1}{1-\sigma}}}{(1-\alpha)^{\frac{1}{1-\sigma}} + \alpha^{\frac{1}{1-\sigma}}} \overline{X}.$$

- Cut-off

$$\overline{X} - X(\alpha^*) = \underline{B}(X(\alpha^*))$$

- Variance of log wages - $\widehat{w}_j(i) = \zeta_{jX}\widehat{x}(i) + \zeta_{jY}\widehat{y}(i)$, within-j deviations

$$\begin{aligned} \operatorname{Var}_{j}\left[\widehat{w}\right] &= \operatorname{Var}_{j}\left[\widehat{y}\right] + \zeta_{jX}^{2} \operatorname{Var}_{j}\left[\widehat{x} - \widehat{y}\right] + 2\zeta_{jX} \operatorname{Cov}_{j}\left[\widehat{y}, \, \widehat{x} - \widehat{y}\right] \\ \zeta_{jX} &= \frac{\lambda_{jX} \, \overline{x}_{j}}{\lambda_{jX} \, \overline{x}_{j} + \lambda_{jY} \, \overline{y}_{j}} \end{aligned}$$

- Cut-off - In symmetric economy RHS depends on distribution of skills

$$\left(\frac{\alpha_1^{**}}{1-\alpha_1^{**}}\right) \middle/ \left(\frac{\alpha^*}{1-\alpha^*}\right) = \underbrace{\left(\frac{\operatorname{Var}_1[\,\widehat{y}\,] - \operatorname{Cov}_1[\,\widehat{x}\,,\,\widehat{y}\,]}{\operatorname{Var}_1[\,\widehat{x}\,] - \operatorname{Cov}_1[\,\widehat{x}\,,\,\widehat{y}\,]}\right) \left(\frac{\overline{y}_1}{\overline{x}_1}\right)}_{\text{If this is < 1, then }\alpha^{**} = \alpha^*}$$

Back - Propositions