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1. Introduction

In this paper, we examine the dynamics of money, velocity, prices, interest rates,

and inflation in an inventory-theoretic model of the demand for money.1 We show that

our inventory-theoretic model offers new answers to two important questions: why do prices

respond sluggishly to changes in money? and why does inflation respond sluggishly to changes

in the short-term nominal interest rate? We first show analytically how prices and inflation

are both sluggish in our model, even though price setting is fully flexible. We then show

through a quantitative example that this sluggishness is substantial and persistent when our

inventory theoretic model is interpreted as applying to a broad monetary aggregate like M2.

Our model is inspired by the analyses of money demand developed by Baumol (1952)

and Tobin (1956). In their models, households carry money (despite the fact that money is

dominated in rate of return by interest bearing assets) because they face a fixed cost of trading

money and these other assets. Our model is a simplified version of their framework. We study

a cash-in-advance model with physically separated asset and goods markets. Households have

two financial accounts: a brokerage account in the asset market in which they hold a portfolio

of interest bearing assets and a bank account in the goods market in which they hold money to

pay for consumption. We assume that households do not have the opportunity to exchange

funds between their brokerage and bank accounts every period. Instead, we assume they

have the opportunity to transfer funds between accounts only once every N ≥ 1 periods.

Hence, households maintain an inventory of money in their bank account large enough to

pay for consumption expenditures for several periods. They replenish this inventory with a

transfer from their brokerage account once every N periods. As households optimally manage

this inventory, their money holdings follow a sawtooth pattern — rising rapidly with each

periodic transfer from their brokerage account and then falling slowly as these funds are spent

smoothly over time — similar to the sawtooth pattern of money holdings originally derived

by Baumol (1952) and Tobin (1956), and more recently by Duffie and Sun (1990) and Abel,

Eberly, and Panageas (2007). Here, we focus on the implications of our model for the response

1Traditionally, the literature on inventory-theoretic models of money demand has focused on the steady-
state implications of these models for money demand (for example, Barro 1976, Jovanovic 1982, Romer 1986,
Chatterjee and Corbae 1992). Here we examine the implications of an inventory-theoretic model of the
demand for money for the dynamics of prices and inflation following a shock to money or to interest rates.



of prices to a change in money growth and the response of inflation to a change in interest

rates. To highlight the specific mechanisms at work, we make the stark assumptions that

price setting is fully flexible and that output in the model is exogenous so that our results

can easily be compared to those from a flexible-price, constant-velocity, exogenous output

benchmark cash-in-advance model of the effect of monetary policy on prices and inflation.

Our first result is that prices respond sluggishly to a change in money in our model.

Prices respond sluggishly in our model because an exogenous increase in the stock of money

leads endogenously, through the dynamics of households’ inventories of money, to a partially

offsetting decrease in the velocity of money. As a result of this endogenous fall in velocity,

prices respond on impact less than one-for-one to the change in money. Prices respond fully

only in the long-run when households’ inventories of money, and hence aggregate velocity,

settle back down to their steady-state values. The sluggish response of prices to a change in

money in our model can then be understood not as a consequence of a sticky-price setting

policy of firms but as a simple consequence of the sluggish response of nominal expenditure

to a change in money inherent in an inventory-theoretic approach to money demand.

We highlight this implication of our inventory-theoretic model of money demand be-

cause a strong negative correlation between fluctuations in money and velocity can be seen

clearly in U.S. data. In Figure 1, we illustrate this short-run behavior of money and velocity.

We plot the ratio of M2 to consumption and the consumption velocity of M2 as deviations

from a trend extracted using an HP-filter. These two series are strongly negatively corre-

lated.2 After presenting our analytical results, we examine the extent to which our model

can reproduce this comovement of money and velocity in a quantitative example.

The mechanism through which our model produces a negative correlation between

fluctuations in money and velocity and hence sluggish prices can be understood in two steps.

First, consider how aggregate velocity is determined in this inventory-theoretic model of

money demand. Households at different points in the cycle of depleting and replenishing

their inventories of money in their bank accounts have different propensities to spend the

2We used the HP-filter smoothing parameter of 34 × 1600 = 129600 recommended by Ravn and Uhlig
(2002) for monthly data. As discussed in the Appendix, similar results are obtained using alternative measures
of the short-run fluctuations in money and velocity.
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money that they have on hand, or, equivalently, different individual velocities of money.

Households that have recently transferred funds from their brokerage account to their bank

account have a large stock of money in their bank account and tend to spend this money

slowly to spread their spending smoothly over the interval of time that remains before they

next have the opportunity to replenish their bank account. Hence, these households have a

relatively low individual velocity of money. In contrast, households that have not transferred

funds from their brokerage account in the recent past and anticipate having the opportunity to

make such a transfer soon tend to spend the money that they have in the bank at a relatively

rapid rate, and thus have a relatively high individual velocity of money. Aggregate velocity

is given by the weighted average of the individual velocities of money across all households

with weights determined by the distribution of money across households.

Now consider the effects on aggregate velocity of an increase in the money supply

brought about by an open market operation. In this open market operation, the government

trades newly created money for interest bearing securities, and households, on the opposite

side of the transaction, trade interest bearing securities held in their brokerage accounts for

newly created money. If the nominal interest rate is positive, this new money is purchased

only by those households that currently have the opportunity to transfer funds from their

brokerage account to their bank account since these are the only households that currently

have the opportunity to begin spending this money. All other households choose not to

participate in the open market operation since these households would have to leave this

money sitting idle in their brokerage accounts where it would be dominated in rate of return

by interest bearing securities. Hence, as a result of this open market operation, the fraction

of the money stock held by those households currently able to transfer resources from their

brokerage account to their bank account rises. Since these households have a lower-than-

average propensity to spend this money, aggregate velocity falls. In this way, an exogenous

increase in the supply of money leads to an endogenous reduction in the aggregate velocity

of money and hence, a diminished, or sluggish, response of the price level.

To this point we have modeled changes in monetary policy as exogenously specified

changes in the money supply. It is now common to model changes in monetary policy not

as exogenously specified changes in money but as exogenously specified changes in the short-
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term nominal interest rate. When we model monetary policy in this way, we find our second

result, that expected inflation responds sluggishly to a change in the short-term nominal

interest rate.

To gain intuition for the result that expected inflation responds sluggishly to a change

in the short-term nominal interest rate, it is useful to consider the Fisher equation to decom-

pose any change in the nominal interest rate into its two components — a change in the real

interest rate and a change in expected inflation. For example, in a standard flexible price

constant endowment cash-in-advance model, the real interest rate is always constant, so that,

given the Fisher equation, any change in the nominal interest rate must always be accom-

panied by a matching change in expected inflation. In this sense, in this model, expected

inflation must respond immediately to a change in the nominal interest rate. More generally,

from the Fisher equation, if a model is to generate a sluggish response of expected inflation

to a change in the nominal interest rate caused by a change in monetary policy implemented

through open market operations, it must do so because those open market operations gener-

ate, in equilibrium, a change in the real interest rate that is roughly as large as the change

in the nominal interest rate. In our inventory theoretic model of money demand, money

injections implemented through open market operations have an effect on the real interest

rate because the asset market is segmented, and it is this effect of open market operations

on the real interest rate that is the source of the inflation sluggishness in our model.

Asset markets are segmented in our model in the sense that only those agents who

currently have the opportunity to transfer money between their brokerage and bank accounts

are at the margin in participating in open market operations and in determining asset prices.

This asset market segmentation arises naturally in an inventory theoretic model of the demand

for money because those agents who do not have the opportunity to transfer money between

the asset and goods markets have no desire to purchase money being injected into the asset

market through an open market operation because these agents have no ability to spend that

money in the current period and they find that interest bearing bonds dominate money as

a store of value in the asset market.3 Because only those agents who currently have the

3These agents choose not to participate in the open market operation as long as the short-term nominal
interest rate remains positive. Note that financial intermediaries also choose not to hold money injected
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opportunity to transfer money from the asset market to the goods market are at the margin

in trading money and bonds with the monetary authority, money injections implemented

through open market operations have a disproportionate impact on the marginal utility of a

dollar for these marginal investors that is manifest as a movement in real interest rates.

We first illustrate the mechanisms leading to a sluggish response of prices to money

and inflation to interest rates in a specification of our model that is analytically tractable. In

this specification of our model, households have log utility and all of the income from selling

the households’ endowments is deposited directly into the households’ brokerage accounts.

With these assumptions, the model becomes analytically tractable because households in

the model choose to spend their inventories of money in their bank accounts at a rate that

is independent of expectations of future prices and monetary policies. We show two main

results in this analytical version of our model. First, starting from a steady-state in which the

opportunity cost of holding money in a bank account is low, in response to a 1% exogenous

increase in the money stock, on impact, the price level increases by only 1/2 of 1% because

velocity falls by 1/2 of 1%. We show how this result follows from the basic geometry of money

holdings in an inventory theoretic model of money demand independently of the parameters

governing the length of time, in calendar time, between households’ opportunities to transfer

cash between their brokerage and bank accounts. Second, also starting from a steady-state,

in response to a one percentage point exogenous change in the nominal interest rate, on

impact, the real interest rate responds by one percentage point and expected inflation does

not respond at all. We show that this result follows from the asset market segmentation

that is inherent in an inventory theoretic model of money demand again independently of the

parameters governing the length of time, in calendar time, between households’ opportunities

to transfer cash between accounts.

The parameters governing the length of time between households’ opportunities to

transfer money between accounts are important, however, for our model’s implications for

the persistence of price and inflation sluggishness. These parameters also determine our

model’s implications for steady-state aggregate velocity — the length of calendar time be-

tween households’ opportunities to transfer money determines the size of the inventory of

through open market operations as long as the short-term nominal interest rate remains positive.
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money households must hold to purchase consumption. Thus, the empirical implications of

our model for the sluggishness of prices and inflation are largely determined by how we define

money (since that definition determines the measure of velocity and hence the magnitude

of households’ cash balances). In our model, defining money comes down to answering the

question: What assets correspond to those that households hold in their bank accounts, and

what assets do households hold and trade less frequently in their brokerage accounts?

We examine the implications of our model in a quantitative example using a broad

measure of money: U.S. households’ holdings of currency, demand deposits, savings deposits,

and time deposits. Here we interpret households’ bank accounts in our model as correspond-

ing to U.S. households’ holdings of deposits in retail commercial banks4 in the data and

households’ brokerage accounts in the model as corresponding to U.S. holdings of other fi-

nancial assets outside of the retail commercial banking system in the data. In the data, U.S.

households hold a large stock of deposits in retail banks, roughly 1/2 to 2/3 of the annual

personal consumption expenditure. We argue for the interpretation of this broad collection of

accounts in the data as corresponding to bank accounts in our model because we find in the

data that U.S. households pay a large opportunity cost in terms of forgone interest to hold

such accounts — on the order of 150-200 basis points. This opportunity cost is not substan-

tially different from the opportunity cost U.S. households pay to hold a narrower definition

of money like M1.

To parameterize our model to match the ratio of U.S. households’ holdings of broad

money relative to personal consumption expenditure, we assume households transfer funds

4In the data, retail banks correspond to a traditional conception of a commercial bank as an institution
funded by consumers’ checking, saving, and small time deposits. Clark et al. (2007), “The Role of Retail
Banking in the U.S. Banking Industry: Risk, Return, and Industry Structure,” in the Federal Reserve Bank of
New York Economic Policy Review provide a useful description of retail banks in our modern financial system.
As they describe, “retail banking is the cluster of products and services that banks provide to consumers and
small businesses through branches, the Internet, and other channels.” “Organizationally, many large banking
companies have a distinct ‘retail banking’ business unit with its own management and financial reporting
structure.” “In terms of products and services, deposit taking is the core retail banking activity on the liability
side. Deposit taking includes transactions deposits, such as checking and NOW accounts, and non-transaction
deposits, such as savings accounts and time deposits (CD’s). Many institutions cite the critical importance
of deposits, especially consumer checking account deposits, in generating and maintaining a strong retail
franchise. Retail deposits provide a low-cost, stable source of funds and are an important generator of fee
income. Checking accounts are also viewed as pivotal because they serve as the anchor tying customers to
the bank and allow cross selling opportunities.”

6



between their brokerage and bank accounts very infrequently — on the order of one every one

and a half to three years. We argue that this assumption is not inconsistent with evidence

summarized by Vissing-Jorgensen (2002) regarding the frequency with which U.S. households

trade in high-yield assets. Our interpretation of a bank account used for transactions replen-

ished by transfers from a high-yield managed portfolio of risky and riskless assets is the same

as used in the models of Duffie and Sun (1990) and Abel, Eberly, and Panageas (2007).

We conduct two quantitative exercises with our model. In the first, we feed into the

model the shocks to the stock of M2 and aggregate consumption observed in the U.S. economy

in monthly data over the past 40 years and examine the model’s predictions for velocity in

the short-run. The model produces fluctuations in velocity that have a surprisingly high

correlation of 0.60 with the fluctuations in velocity observed in the data. This result stands

in sharp contrast to the implications of a standard cash-in-advance model (this model with

N = 1). In such a model, aggregate velocity is constant regardless of the pattern of money

growth. We also find that the short-run fluctuations in velocity in our model are only 40% as

large as those in the data. From the finding that the short-run fluctuations in velocity in our

model are highly correlated with those observed in the data, we conclude that a substantial

portion of the unconditional negative correlation of the ratio of money to consumption and

velocity might reasonably be attributed to the response of velocity to exogenous movements

in money. From the finding that the short-run fluctuations in velocity in our model are not

as large as those in the data, however, we conclude that there may be other shocks to the

demand for money which we have not modeled here.

In our second quantitative exercise, we consider the response of money, prices, and

velocity to an exogenous shock to monetary policy, modeled as an exogenous, persistent shock

to the short-term nominal interest rate similar to that estimated in the literature which uses

vector autoregressions (VARs) to draw inferences about the effects of monetary policy. The

consensus in that literature is that the impulse response of inflation to a monetary policy

shock is sluggish.5 In our model we find that the impulse response of inflation is also quite

5See Cochrane (1994) and Leeper, Sims and Zha (1996) for early estimates, Christiano, Eichenbaum and
Evans (1999) and Uhlig (2005) for an overview, and Christiano, Eichenbaum, and Evans (2005) for recent
estimates.
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sluggish, as are the responses of money and the price level. All three of these responses

from our model are quite similar to the estimated responses of these variables in this VAR

literature. While our model is incomplete in that we have assumed for simplicity that output

is exogenous, these findings suggest that our model can account for a substantial portion of

the sluggish responses of nominal variables to a change in the nominal interest rate.

Our model is related to a growing literature on segmented asset markets. Grossman

and Weiss (1983) and Rotemberg (1984) were the first to point out that open market op-

erations could have effects on real interest rates and a delayed impact on the price level in

inventory-theoretic models of money demand. The models they present are similar to this

model when the parameter N = 2. Those authors examine the impact of a surprise money

injection in the context of otherwise deterministic models. Here we study a fully stochastic

model as in Alvarez and Atkeson (1997). That model is similar to the one presented here in

that agents have separate financial accounts in asset and goods markets and cannot transfer

funds between these accounts in every period. In that earlier paper, however, in equilibrium,

the individual velocity of money is the same for all households and is constant over time so

that aggregate velocity is constant. This result follows from the assumptions in that paper

that households have logarithmic utility and a constant probability of being able to transfer

money between the asset market and the goods market. The asset pricing implications of

our model are closely related to those obtained by Grossman and Weiss (1983), Rotemberg

(1984), and Alvarez and Atkeson (1997). In particular, our model has predictions for the

effects of money injections on real interest rates arising from the segmentation of the asset

market related to the predictions in those papers and those in Alvarez, Atkeson, and Kehoe

(2002, 2007) and Alvarez, Lucas, and Weber (2001). Alvarez, Atkeson, and Kehoe (2002,

2007) study the implications of models with segmented asset markets in which households

pay a fixed cost to transfer money between bank and brokerage accounts. In that paper,

they focus on equilibria in which all households spend all of the money in their bank account

every period so that, again, velocity is constant.

Two closely related papers build on our framework by endogenizing segmentation (in

the spirit of the original Baumol-Tobin model). Chiu (2007) studies a version of our model

where households face a fixed utility cost of transferring resources between bank and brokerage
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accounts. He solves numerically for the equilibrium response of the model to a once-and-for-

all increase in the money supply, starting from steady state.6 He finds that the size of the

initial money growth shock plays a key role in determining the response to a shock. When the

money growth shock is small relative to the fixed cost, households do not pay the fixed cost

and the equilibrium dynamics are the same as in an exogenous segmentation model: a money

shock leads to an offsetting fall in aggregate velocity so that the price level responds sluggishly.

But for a sufficiently large money injection relative to the fixed cost, all households pay the

fixed cost, and so there is no offsetting fall in aggregate velocity and the price level responds

one-for-one to money growth. Because of this, Chiu (2007) concludes that the results from

our model are not robust to endogenous segmentation. Khan and Thomas (2007) study a

version of our model where households face idiosyncratic fixed costs of transferring resources

between the two accounts,7 and develop flexible numerical methods for solving the model.

They show that the distribution of the idiosyncratic fixed costs plays an important role in

determining the equilibrium responses of the model to a money shock. In their benchmark

calibrated example, they find that these costs actually reinforce the sluggishness of prices and

reinforce the persistence of liquidity effect relative to our model.

The paper proceeds as follows. We present the general model. We next present our

results on the impact effects of monetary policy on prices and inflation in the analytically

tractable specification of our model. We then present our quantitative exercises. In a final

section, we discuss how monetary policy might affect output in a version of our model with

production and a discussion of how our results compare with those on price and inflation

sluggishness obtained in models with nominal rigidities.

2. An inventory-theoretic model of money demand

Consider a cash-in-advance economy in which the asset market and the goods market

are physically separated. There is a unit mass of households each composed of a worker and

6Silva (2008) computes the equilibrium response of prices to an interest rate shock in a closely related
continuous time model.

7Alvarez, Atkeson, and Kehoe (2002) use idiosyncratic fixed costs to endogenously segment asset markets,
but they assume households spend all their money each period so that aggregate velocity is constant and
equal to one. In Khan and Thomas (2007), as in this paper, not all households spend all their money each
period and so there is a non-degenerate cross section distribution of money holdings.
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a shopper. Each household has access to two financial intermediaries: one that manages its

portfolio of assets and another that manages its money held in a transactions account in

the goods market. We refer to the household’s account with the financial intermediary in

the asset market as its brokerage account and its account with the financial intermediary in

the goods market as its bank account. There is a government that injects money into the

asset market via open market operations. Households that participate in the open market

operation purchase this money with assets held in their brokerage accounts. These households

must transfer this money to their bank account before they can spend it on consumption.

Time is discrete and denoted t = 0, 1, 2, .... The exogenous shocks in this economy are

shocks to the money growth rate µt and shocks to the endowment of each household yt. Since

all households receive the same endowment, yt is also the aggregate endowment of goods in

the economy. Let ht = (µt, yt) denote the realized shocks in the current period. The history

of shocks is denoted ht = (h0, h1, . . . , ht) . From the perspective of time zero, the probability

distribution over histories ht has density ft(h
t).

As in a standard cash-in-advance model, each period is divided into two sub-periods.

In the first sub-period, each household trades assets held in its brokerage account in the asset

market. In the second sub-period, the shopper purchases consumption in the goods market

using money held in the household’s bank account while the worker sells the endowment in

the goods market for money Pt(h
t)yt(h

t), where Pt(h
t) denotes the price level in the current

period. In the next period, a fraction γ ∈ [0, 1] of the worker’s earnings is deposited in the

bank account in the goods market while the remaining 1− γ of these earnings are deposited

in a brokerage account in the asset market. We interpret γ as the fraction of total income

households receive regularly deposited into their transactions accounts or as currency. We

refer to γ as the paycheck parameter and to γPt−1(ht−1)yt−1(ht−1) as the household’s paycheck.

We interpret 1− γ as the fraction of total income households receive in the form of interest

and dividends paid on assets held in their brokerage accounts.

Unlike a standard cash-in-advance model, households cannot transfer money between

the asset market and the goods market every period. Instead, each household has the oppor-

tunity to transfer money between its brokerage account and its bank account only once every

N periods. In other periods, a household can trade assets in its brokerage account and use
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money in its bank account to purchase goods; it simply cannot move money between these

two accounts. We refer to households that currently have the opportunity to transfer money

between their accounts as active households.

Each period a fraction 1/N of the households are active. We index each household by

the number of periods since it was last active, here denoted by s = 0, 1, ..., N−1. A household

of type s < N − 1 in the current period will be type s+ 1 in the next period. A household of

type s = N−1 in the current period will be type s = 0 in the next period. Hence a household

of type s = 0 is active in this period, a household of type s = 1 was active last period, and

a household of type s = N − 1 will be active next period. In period 0, each household has

an initial type s0, with fraction 1/N of the households of each type s0 = 0, 1, ..., N − 1. Let

S(t, s0) denote the type in period t of a household that was initially of type s0.

The quantity of money a household s has on hand in its bank account at the beginning

of goods market trade is Mt(s, h
t). The shopper in this household spends some of this money

on goods, Pt(h
t)ct(s, h

t), and the household carries the unspent balance in its bank account

into next period, Zt(s, h
t). For an inactive household of type s > 0, the balance in its bank

account at the beginning of the period is equal to the quantity of money that it held over in

its bank account last period Zt−1(s− 1, ht−1) plus its paycheck γPt−1(ht−1)yt−1(ht−1). Thus,

the evolution of money holdings and consumption for inactive households is:

Mt(s, h
t) = Zt−1(s− 1, ht−1) + γPt−1(ht−1)yt−1(ht−1), (1)

Mt(s, h
t) ≥ Pt(h

t)ct(s, h
t) + Zt(s, h

t). (2)

When a household is of type s = 0, and hence active, it also chooses a transfer of

money Ptxt from its brokerage account in the asset market into its bank account in the goods

market. Hence, the money holdings and consumption of active households satisfy:

Mt(0, h
t) = Zt−1(N − 1, ht−1) + γPt−1(ht−1)yt−1(ht−1) + Pt(h

t)xt(h
t), (3)

Mt(0, h
t) ≥ Pt(h

t)ct(0, h
t) + Zt(0, h

t). (4)

In addition to the bank account constraints, equations (1)-(4) above, the household also
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faces a sequence of brokerage account constraints. In each period the household can trade a

complete set of one-period state contingent bonds which pay one dollar into the household’s

brokerage account next period if the relevant contingency is realized. Let Bt−1(s − 1, ht)

denote the stock of bonds held by households of type s at the beginning of period t following

history ht, and let Bt(s, h
t, h′) denote bonds purchased at price qt(h

t, h′) that will pay off

next period if h′ is realized. Let At(s, h
t) ≥ 0 denote money held by the household in its

brokerage account at the end of the period. Since an inactive household of type s > 0 cannot

transfer money between its brokerage account and its bank account, this household’s bond

and money holdings in its brokerage account must satisfy:

Bt−1(s− 1, ht) + At−1(s− 1, ht−1) + (1− γ)Pt−1(ht−1)yt−1(ht−1)− Pt(ht)τt(ht) (5)

≥
∫
qt(h

t, h′)Bt(s, h
t, h′)dh′ + At(s, h

t),

where τt(h
t) denotes real lump-sum taxes. Each household’s real bond holdings must remain

within arbitrarily large bounds. The analogous constraint for active households is:

Bt−1(N − 1, ht) + At−1(N − 1, ht−1) + (1− γ)Pt−1(ht−1)yt−1(ht−1)− Pt(ht)τt(ht) (6)

≥
∫
qt(h

t, h′)Bt(0, h
t, h′)dh′ + Pt(h

t)xt(h
t) + At(0, h

t),

where Pt(h
t)xt(h

t) is the active household’s transfer of money from brokerage to bank account.

At the beginning of period 0, initially inactive households begin with exogenous bal-

ances M̄0(s0) in their bank accounts in the goods market. This quantity is the balance on the

left side of (2) in period 0. For initially active households, the initial balance M̄0(0, h0) in (4)

is composed of an exogenous initial balance Z̄0 and a transfer P0(h0)x0(h0) of their choosing.

Each household also begins with exogenous balance B̄−1(s0) in its brokerage account on the

left side of constraints (5) and (6). The households initially have no money corresponding to

Ā−1(s0) in their brokerage accounts.

For each date and state and taking as given the prices and aggregate variables, each

household of initial type s0 chooses complete contingent plans for transfers, consumption,
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bond, and money holdings to maximize expected utility:

∞∑
t=0

βt
∫
u[ct(s, h

t)]ft(h
t)dht, s = S(t, s0)

subject to the constraints (1), (2), and (5) in those periods t in which S(t, s0) > 0, and

constraints (3), (4), and (6) in those periods t in which S(t, s0) = 0.

Let Bt(h
t) be the total stock of government bonds. The government faces a sequence

of budget constraints:

Bt−1(ht) = Mt(h
t)−Mt−1(ht−1) + Pt(h

t)τt(h
t) +

∫
qt(h

t, h′)Bt(h
t, h′)dh′,

together with arbitrarily large bounds on the government’s real bond issuance. We denote

the government’s policy for money injections as µt(h
t) = Mt(h

t)/Mt−1(ht−1). In period 0, the

initial stock of government debt is B̄−1 and M0(h0)− M̄−1 is the initial monetary injection.

This budget constraint implies that the government pays off its initial debt with a combination

of lump-sum taxes and money injections achieved through open market operations.

An equilibrium of this economy is a collection of prices, complete contingent plans for

households, and government policy such that (i) taking as given prices and government policy,

the complete contingent plans solve each household’s problem, and (ii) the goods market clears

1
N

∑N−1
s=0 ct(s, h

t) = yt(h
t), the money market clears, 1

N

∑N−1
s=0 [Mt(s, h

t) + At(s, h
t)] = Mt(h

t),

and the bond market clears, 1
N

∑N−1
s=0 Bt(s, h

t, h′) = Bt(h
t, h′) at each date and state.

To understand equilibrium money demand and asset prices, we examine the house-

hold’s first order conditions. Let ηt(s, h
t) denote Lagrange multipliers on the bank account

constraints (2) and (4) of household s, and let λt(s, h
t) denote Lagrange multipliers on the

brokerage account constraints (5) and (6). Active households choose transfers xt(h
t) to equate

the multipliers on the bank and brokerage accounts:

ηt(0, h
t) = λt(0, h

t). (7)
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For households of type s the marginal utility of a dollar satisfies:

ηt(s, h
t) = βt

u′[ct(s, h
t)]

Pt(ht)
ft(h

t). (8)

The multipliers on the bank accounts satisfy the inequalities:

ηt(s, h
t) ≥

∫
ηt+1(s+ 1, ht, h′)dh′, (9)

which hold with equality if Zt(s, h
t) > 0. Combining (8)-(9) we have the consumption Euler

equations that determine a household’s money demand:

1 ≥
∫
β
u′[ct+1(s+ 1, ht, h′)]

u′[ct(s, ht)]

Pt(h
t)

Pt+1(ht, h′)

ft+1(ht, h′)

ft(ht)
dh′, (10)

again, which holds with equality if Zt(s, h
t) > 0. The evolution of the marginal utility of a

dollar in the brokerage account is determined by state contingent bond prices:

qt(h
t, h′) =

λt+1(s+ 1, ht, h′)

λt(s, ht)
. (11)

Under the assumption that initial conditions are such that the initial Lagrange multipliers

on the brokerage account λ0(s0) are the same for all households,8 equations (7), (8), and (11)

together imply that state contingent bond prices are then given by:

qt(h
t, h′) = β

u′[ct+1(0, ht, h′)]

u′[ct(0, ht)]

Pt(h
t)

Pt+1(ht, h′)

ft+1(ht, h′)

ft(ht)
. (12)

The nominal interest rate is then found from the price of an uncontingent bond paying interest

it(h
t) in nominal terms:

1

1 + it(ht)
=

∫
qt(h

t, h′)dh′ =

∫
β
u′[ct+1(0, ht, h′)]

u′[ct(0, ht)]

Pt(h
t)

Pt+1(ht, h′)

ft+1(ht, h′)

ft(ht)
dh′. (13)

In what follows, we will characterize equilibrium in an analytically tractable specifi-

8This can be ensured by an appropriate choice of initial bond holdings B̄0(s0) or with the assumption that
households trade securities contingent on their initial type s0 in an initial asset market before they learn this
type.
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cation of our model using methods similar to those used in a Lucas-tree economy (see Lucas

1978). That is, we will find the allocations of money and consumption across households

implied by market clearing and then solve for asset prices in terms of marginal utilities using

the first order conditions linking bond prices to ratios of marginal utilities above. To gain

intuition as to how these prices lead households to choose to purchase more or less money in

an open market operation as required in equilibrium to match the central bank’s policy for

money injections, we find it useful to recast these first order conditions in terms of the date

zero asset prices implied by our state contingent bond prices. Specifically, let Qt(h
t) denote

the price in period 0 of one dollar delivered in the asset market in period t following history

ht. These prices satisfy the recursion Qt(h
t) = Qt−1(ht−1)qt−1(ht−1, ht) for t ≥ 1.

From (11) and the recursion for date zero prices we then have that for all households:

Qt(h
t) = λt(s, h

t). (14)

Again, using the assumption that initial conditions are such that the initial Lagrange multi-

pliers on the brokerage account λ0(s0) are the same for all households, from (7)-(8), we have

that asset prices are determined by the marginal utility for active households:

Qt(h
t) = βt

u′[ct(0, h
t)]

Pt(ht)
ft(h

t). (15)

A large money injection at t and ht is associated with a low date zero price Qt(h
t) and large

purchases of money by those households that are currently active (obtained by selling bonds).

These active households then transfer this money immediately to their bank accounts and

begin spending it, so the low date zero price Qt(h
t) is associated with high consumption

ct(0, h
t) for households that happen to be active at this date. Likewise, a small money

injection at t and ht is associated with a high date zero price Qt(h
t) and small purchases of

money and low consumption by those households that are currently active.

The mechanism through which money injections in this model have an impact on

“real” asset prices is also most easily understood in terms of these date zero asset prices. We

can define a real asset price as the price at date zero of a claim to sufficient cash to purchase

one unit of consumption at date t following history ht. This price is given by Qt(h
t)Pt(h

t).
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Note from (15) that this asset price is equal to the marginal utility of consumption of the

households that are active at date t. In a standard cash-in-advance model, all households

are active at each date and consumption is exogenous so this real asset price is invariant

to the specification of monetary policy. As we show below, in our model, money injections

redistribute cash holding across households and thus impact the consumption of the subset

of agents who are active at a given date. Corresponding to this redistributive effect, in our

model, money injections thus also impact real asset prices in equilibrium.

To this point, we have made explicit reference to uncertainty in the notation so as to

give a clear characterization of state contingent asset prices. For the remainder of the paper

we suppress reference to histories ht to conserve notation. The inequalities governing money

demand can therefore be written:

1 ≥ Et

{
β
u′[ct+1(s+ 1)]

u′[ct(s)]

Pt
Pt+1

}
, (16)

with strict equality if Zt(s) > 0, while the price for bonds can be written:

1

1 + it
= Et

{
β
u′[ct+1(0)]

u′[ct(0)]

Pt
Pt+1

}
. (17)

3. How the model works

In this section, we solve our model for a special case that is analytically tractable to

demonstrate how the model works. In this special case, agents have utility u(c) = log(c)

and the paycheck parameter is γ = 0. Given these assumptions, households of type s spend

a constant fraction v(s) of their current money holdings and carry the remaining fraction

1− v(s) into the next period, irrespective of the future path of money and prices. As a result

of the fact that agents choose this simple pattern of expenditure we can, in this special case,

solve analytically for the dynamic, stochastic equilibrium of our model.

We use this analytical example to first show how the price level responds sluggishly to

an exogenous change in money growth and then show how inflation responds sluggishly to an

exogenous change in the nominal interest rate. In the next section, we explore the quantitative

implications of our model for illustrative examples in which household expenditure does vary
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with the future path of money and prices because agents have preferences other than log

utility and/or the paycheck parameter is positive.

In presenting this version of the model, we allow the length of a time period to be

an arbitrary ∆ > 0 units of calendar time (measured in fractions of a year). We continue

to use t to count time periods so after t periods t∆ units of calendar time have passed. We

refer to flow variables such as consumption at annual rates so that ct∆ is consumption in

period t. Likewise, the discount factor for the flow utility is β∆, where β reflects discounting

in preferences at an annual rate. We let T > 0 denote the calendar length of time between

activity for households so that N = T/∆ is the number of periods that elapse between

activity. We first derive results for an arbitrary length of a period ∆ and then focus attention

on particularly simple formulas that obtain when we let ∆ → 0 for fixed T (so that N

approaches infinity). We focus on the case of an arbitrarily small time period to show that

the time period in our model does not have any economic significance and because this helps

simplify the resulting formulas. For expositional purposes, we leave all the algebraic details

to the Appendix.

In our analysis here, we assume that, in equilibrium, nominal interest rates are positive

so that households choose not to hold money in their brokerage accounts where money is

dominated in rate of return by bonds and that the opportunity cost of holding money in a

bank account is high so that those households who are about to transfer money between their

brokerage and bank accounts do not hold money in their bank accounts. These conditions

are analogous to the cash-in-advance constraint binding in a standard cash-in-advance model

(this model with N = 1). After solving the model under these assumptions, one can use

equations (16) and (17) to check the first order conditions governing these two assumptions

regarding money holdings.

A. Money and velocity

In our model, households periodically withdraw money from the asset market and

then spend that money slowly in the goods market to ensure it lasts until they have another

opportunity to withdraw money from the asset market. As a result, households’ equilibrium

paths for money holdings have the familiar saw-toothed shape characteristic of inventory-
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theoretic models of money demand. Here we discuss how this saw-toothed pattern of money

holdings shapes our model’s implications for the dynamics of money, velocity, and prices.

Given our assumption that households have utility u(c) = log(c) and the paycheck

parameter is γ = 0, households’ money holdings and nominal spending at period t for a

period of length ∆ are given by:

Mt+1(s+ 1) = (1− v(s)∆)Mt(s) and Ptct(s)∆ = v(s)∆Mt(s), (18)

with

v(s) ≡ 1

∆

1− β∆

1− β∆(N−s) . (19)

We refer to the fraction v(s) as the individual velocity of money at an annual rate

and to v(s)∆ as individual velocity in period t. Note that, in this special case of our model,

these individual velocities of money are constant over time regardless of expectations of the

future path of money and prices. Observe that these individual velocities v(s)∆ converge

to 1/(N − s) as β approaches one. In this limiting case, the nominal expenditure of each

household is constant over time as it is assumed in the original Baumol-Tobin framework.

Given that individual velocities v(s)∆ are constant in this specification of our model,

aggregate velocity at any date or state is simply a function of the distribution of money across

these households with different individual velocities. If the nominal interest rate is positive, so

that households do not hold any money in the asset market, money market clearing implies:

Mt =
1

N

N−1∑
s=0

Mt(s). (20)

Accordingly, we interpret {Mt(s)/Mt}N−1
s=0 as the distribution of money holdings across house-

holds. Goods market clearing then implies the aggregate velocity of money is a weighted

average of the individual velocities of money where the weights are given by the distribution
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of money holdings across households:

vt ≡
Ptyt
Mt

=
1

N

N−1∑
s=0

Ptct(s)

Mt

=
1

N

N−1∑
s=0

v(s)

(
Mt(s)

Mt

)
, (21)

where vt is aggregate velocity at an annual rate.

In a steady-state with constant money growth, the distribution of money holdings

across households of different types is constant. Hence aggregate velocity is also constant

and the steady-state inflation rate is equal to the money growth rate. Therefore our model

predicts that in the long-run, along a steady-state growth path, the price level and the money

supply grow together while the aggregate velocity of money stays constant.

Out of steady-state, however, as a result of the fact that the individual velocities

of money v(s)∆ vary across households with different values of s, fluctuations in aggregate

money growth cause fluctuations in the distribution of money across households, and this

in turn causes fluctuations in aggregate velocity. More specifically, the dynamics of prices,

velocity, and money are determined by two factors: first, the differences in individual velocities

v(s)∆ across households of different types and second, the effect of a money injection on the

distribution of money holdings across households. How these factors affect fluctuations in

aggregate velocity can be understood intuitively as follows.

First, consider the differences in individual velocities v(s)∆. These measures of in-

dividual velocity equal the flow of consumption obtained by that household relative to its

money holdings at the beginning of the period. From (19), we immediately see that v(s)∆ is

increasing in s. A household of type s close to zero holds a large stock of money relative to

its consumption while a household of type s close to N − 1 holds only a small stock of money

relative to its consumption.

Next consider how a money injection affects the distribution of money across house-

holds. From (18), the evolution of the distribution of money for households of type s =

1, . . . , N − 1 is given by:

Mt(s)

Mt

= (1− v(s− 1)∆)
Mt−1(s− 1)

Mt−1

1

µ∆
t

, (22)
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using µt = (Mt/Mt−1)1/∆ to denote money growth at an annual rate. Since the distribution

of money must sum to one, the money holdings of active households are:

1

N

Mt(0)

Mt

= 1− 1

N

N−1∑
s=1

(1− v(s− 1)∆)
Mt−1(s− 1)

Mt−1

1

µ∆
t

. (23)

Given an initial distribution of money holdings across households and a process for money

growth µt, equations (22) and (23) completely characterize the equilibrium dynamics of the

distribution of money holdings across households and hence the equilibrium dynamics of

aggregate velocity and the price level.

This law of motion for the distribution of money has two key implications. First,

in response to an increase in the money supply, aggregate velocity falls and thus the price

level responds less than one-for-one with the money supply. Hence, prices in this model are

sluggish in that they move less than would be predicted by the simplest quantity theory.

Specifically, the proportional response of prices on impact is roughly half as large as the

proportional change in the supply of money. Second, there is a persistently sluggish response

of prices to changes in the quantity of money, and the extent of persistence is increasing in

the calendar length of time between periods of activity.

To see these implications, consider first the impact effect of a money injection on

velocity. By redistributing money towards the active households, an increase in the supply of

money tilts the distribution of money holdings towards agents with low individual velocities

and away from agents with high individual velocities, lowering aggregate velocity. To see

this result more formally, we proceed in two steps. In the first step, we derive the elasticity

of velocity with respect to money growth for an arbitrary period length and show that the

elasticity is negative — so that on impact velocity declines when money growth increases. In

the second step, we consider the case of an arbitrarily small period length.

To derive the elasticity of velocity with respect to money growth in period t analyti-

cally, from equations (21), (22), and (23) observe:

∂
(
vtµ

∆
t

)
∂µ∆

t

= v(0). (24)
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Hence the elasticity of velocity with respect to money growth in period t is given by:

∂ log(vt)

∂ log(µ∆
t )

=

[
∂(vtµ

∆
t )

∂µ∆
t

− vt
]

1

vt
=
v(0)− vt

vt
. (25)

Since the individual velocity of active households is less than aggregate velocity (v(0) < vt),

aggregate velocity declines when money growth increases. Given the exchange equation

Mtvt = Ptyt, we see that the price level does not respond on impact one-for-one with an

increase in the money supply since that increase in the money supply leads to an endogenous

decrease in aggregate velocity.

To quantify this elasticity, we evaluate velocity at steady-state vt = v̄. To simplify

the formulas, we suppose the steady-state money growth rate is µ̄ = 1 and the time discount

factor β → 1 so that the steady-state real return to holding money, β/µ̄, also goes to one. In

this limiting case, the expenditure of each household is constant over time as in the original

Baumol-Tobin framework.

In this limit, individual velocity of active households per period v(0)∆ = ∆/T and

steady-state aggregate velocity per period is v̄∆ = 2/(T/∆ + 1) so that, under these assump-

tions, the elasticity of aggregate velocity with respect to period money growth is:

∂ log(v)

∂ log(µ∆)
= −1

2

T/∆− 1

T/∆
, and

∂ log(π)

∂ log(µ∆)
=

1

2

T/∆ + 1

T/∆
, (26)

where these derivatives are evaluated at steady-state and where π denotes the inflation rate.

We can see here that if T = ∆ so that N = 1, as in a standard cash-in-advance model,

inflation responds one-for-one with the shock to money growth and velocity is constant. In

contrast, if for fixed T we take ∆ → 0, then inflation responds only 1/2 as much as money

growth. This result follows from the geometry of money holdings implied by an inventory-

theoretic model — a household that has just replenished its bank account will hold roughly

twice as much money as an average household and hence have roughly half the velocity of

the average household.

Note that here, as we consider the limit as the time period ∆ shrinks to zero, we also

shrink the magnitude of the money injection to zero. To be able to properly interpret the

impact effect, we now specify our model with a small yet finite value of ∆ and consider the
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effect of a sequence of money injections carried out gradually, one per model period, that

cumulate over time to a sizable injection. To be specific, we set ∆ to correspond to a day,

and calculate the effects of a total increase in the money supply of 1% accomplished via a

sequence of equally sized money injections, one per model period, over the course of one

month, i.e., a money injection that increases the money supply by 1/30th of 1% for 30 days,

a shock of 0.0333% each day for 30 days. Our analytical results characterize the response

of velocity and prices to the money injection on the first day, since we start the model off

from a steady-state. After the first day, however, the distribution of money holdings across

households is no longer in steady-state and we must track the impact of the remaining money

injections numerically.

Figure 2 illustrates the dynamics of money, velocity, and prices following this shock.

In response to this money injection, aggregate velocity falls and the price level responds

less than one-for-one with the change in the money supply. As we showed analytically, the

elasticity of velocity with respect to money growth near steady-state is approximately −1/2.

The impact effect of the first day’s money injection on velocity is −0.0166%, very close to

the analytical value of 0.5×−0.0333% to be expected. Tracking the effects of the remaining

29 money injections gives the cumulative effect of this sequence of money injections at time

t = 30 days on velocity of −0.48%, approximately −1/2 of the cumulative shock of 1.00%

that was introduced over those 30 days. In the figure, we trace out the dynamics of money

and prices for a total of 300 days (or 10 months). Over time, aggregate velocity and prices

rise, even overshooting their steady-state levels, and then gradually converge to steady-state

with dampened oscillations.

The results displayed in Figure 2 regarding the impact of a 1% increase in the money

stock carried out over one month are very similar to the results that we obtain when we simply

set the length of the model period ∆ to correspond to one month and calculate the effect of

a 1% increase in the money supply accomplished in a single model period (the corresponding

figure is available upon request).

The dynamics of velocity following a shock can be understood as follows. Since the

money growth rate is high for only one month, from (22) we see that the households who

were active at the time of the money injection carry an abnormally large stock of money until
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they next have the opportunity to transfer funds from their brokerage account. As shown in

(19), their individual velocities rise each period until this next visit occurs. Thus, aggregate

velocity remains below its steady-state level for a time initially as these agents have a low

individual velocity and then rises past its steady-state level as the individual velocity for these

agents rises. After N months these agents have spent all of their money and they visit the

asset market again. If this were the only effect, we would expect aggregate velocity to return

to its steady-state value in N/2 months. However, we show in the Appendix that aggregate

velocity remains below its steady-state value for approximately N log(2) months, well over

N/2 months (since log(2) ≈ 0.69). In this sense, there is persistence in the sluggish response

of prices to changes in the quantity of money and this persistence is increasing in N . The

periodic structure of the model introduces a sequence of dampened oscillations in velocity as

the changes in the distribution of money holdings work their way through the system. After

the first N months, however, these effects are quite small.

B. Interest rates and inflation

Until now, we have taken as given the path of money growth and examined our model’s

implications for the responses of velocity and the price level to a shock to money growth.

An alternative approach is to discuss monetary policy in terms of interest rates and solve

endogenously for the responses of money growth, velocity, and inflation consistent with a

shock to nominal interest rates. We turn now to such an analysis. Here we show our main

result that, on impact, inflation responds sluggishly to a shock to interest rates.

We demonstrate analytically that the response of inflation to a change in the nominal

interest rate is sluggish in our model when N is large, again under the assumptions that

u(c) = log(c) and γ = 0 so that individual velocities v(s) are time-invariant. We solve for the

responses of money growth, velocity, and inflation to a change in the nominal interest rate

in a deterministic setting. Specifically, we assume the nominal interest rate, inflation, money

growth, and the distribution of money holdings across households (and hence velocity) are all

initially at steady-state values corresponding to a constant interest rate ı̄. We fix at t = 0 an

increase in the nominal rate above steady-state, i0 > ı̄. We solve for the response of inflation,

money growth, and velocity consistent with this change in the nominal interest rate.
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To solve for these responses, we use the pricing formula for nominal bonds (17). In

a deterministic setting, this formula can be rewritten as a Fisher equation relating nominal

interest rates, real interest rates, and inflation between the current period and the next:

ı̂t = r̂t + π̂t+1, (27)

where a “hat” denotes log deviation from steady-state and where we repeatedly use approx-

imations of the form log(1 + it) ≈ it.

We use this Fisher equation to find a path for money growth such that the implied

paths for inflation and the real interest rate are consistent with the exogenously specified

path for the nominal interest rate. Recall that, in our model, changes in the path of money

growth have an impact on velocity, inflation, and real interest rates, with the magnitude of

these changes depending on N .

As a benchmark, consider first the responses of money growth, velocity, and inflation

when N = 1 (so that our model is a standard constant-velocity cash-in-advance model).

With N = 1, all households are active, velocity is constant, and the consumption of active

households is also constant at ct(0) = y. As a result, in this case, inflation is equal to money

growth (π̂t+1 = µ̂t+1) and the real interest rate is constant (r̂t = 0). With these results, we

see that any path of money growth that is consistent with our exogenously specified path of

nominal interest rates must have money growth µ̂1 and inflation π̂1 responding one-for-one

to the change in the nominal interest rate in period 0 . That is, µ̂1 = ı̂0. Clearly, in this case,

the response of inflation from period t = 0 to t = 1 anticipated in period t = 0 in response

to the change in the nominal interest rate ı̂0 is not at all sluggish.

Our solution of the model in this benchmark case with N = 1 is not yet complete as we

have not solved for the equilibrium responses of money growth µ̂0 and inflation π̂0 on impact,

at date t = 0. It is well known that in this textbook cash-in-advance model (N = 1), this

initial money growth rate and inflation rate are not determinate under an exogenous interest

rate rule. We resolve the indeterminacy by choosing the particular path of money growth µ̂0

so that, on impact, inflation from the last period to the current period does not respond to

the change in the nominal interest rate in the current period (i.e., so that π̂0 = 0). In the
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model with N = 1, this is achieved by setting µ̂0 = 0. This resolution of the indeterminacy

is equivalent to assuming that the price level in period t = 0 does not respond to the change

in the nominal interest rate and hence is consistent with the schemes used to identify shocks

to monetary policy discussed in Christiano, Eichenbaum, and Evans (1999). Note that this

resolution of the indeterminacy fixes the responses of money growth and inflation at date

t = 0 by assumption. What is of interest are the equilibrium values of money growth and

inflation at date t = 1, µ̂1 and π̂1.

We now turn to the case of a general N > 1. At the end of this section, we show

that this indeterminacy of the initial money growth rate µ̂0 given the exogenous path of the

nominal interest rate extends to our setting with N > 1. In particular, we show that, as in

the case with N = 1, there is a continuum of paths of money growth consistent with a given

path of nominal interest rates. As in the case with N = 1, with N > 1, this continuum has

only one dimension, that is, these paths can be indexed by their initial money growth rates µ̂0

despite the fact that this model has a non-degenerate distribution of money holdings across

households as a state variable that is absent from the model with N = 1. Here, we again

resolve this indeterminacy by examining the path of money growth consistent with π̂0 = 0.

Given our assumption of log utility and γ = 0 so that individual velocities are constant over

time, this path of money growth has initial money growth at its steady-state level µ̂0 = 0.

Given this result that µ̂0 = 0 under our resolution of the indeterminacy under an

interest rate rule, we solve for the equilibrium responses of money growth µ̂1, velocity v̂1,

and inflation π̂1 to the change in the nominal interest rate ı̂0 in period t = 0 by finding the

value of money growth µ̂1 such that the equilibrium responses of the real interest rate r̂0 and

inflation π̂1 are consistent with the assumed movement in the nominal interest rate. We solve

for each of these responses in turn.

Consider first the response of the real interest rate r̂0 to a change in money growth µ̂1.

This real interest rate is determined by the growth of the consumption of active households

according to r̂0 = ĉ1(0)−ĉ0(0). Given that the individual velocity for active households v(0) is

constant over time, the consumption of active households is given by ct(0) = v(0)mt(0)Mt/Pt,

where mt(0) = Mt(0)/Mt is the share of the money supply held by active households. The
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real interest rate can therefore be written:

r̂0 = m̂1(0)− m̂0(0) + µ̂1 − π̂1. (28)

Given that initial inflation and money growth are at their steady-state values, and given our

assumed initial conditions, the distribution of money holdings across households at date t = 0

is equal to its steady-state value, and hence the share of the money supply held by active

households mt(0) and velocity vt are also equal to their steady-state values. Thus, we have

m̂0(0) = 0 and:

r̂0 =

[
∂ log(m(0))

∂ log(µ)
+ 1− ∂ log(π)

∂ log(µ)

]
µ̂1, (29)

where ∂ log(m(0))/∂ log(µ) and ∂ log(π)/∂ log(µ) are the elasticities of the share of money

held by active households and of inflation with respect to money growth, both evaluated at

the steady-state. From (28), these results then imply that the money growth required in

period 1 to implement the nominal interest rate ı̂0 in period 0 is given by:

µ̂1 =

[
1

1 + ∂ log(m(0))
∂ log(µ)

]
ı̂0. (30)

Thus, the real interest rate and inflation rate are given by:

r̂0 =

[
1−

∂ log(π)
∂ log(µ)

1 + ∂ log(m(0))
∂ log(µ)

]
ı̂0, and π̂1 =

[ ∂ log(π)
∂ log(µ)

1 + ∂ log(m(0))
∂ log(µ)

]
ı̂0. (31)

To discuss these formulas, we return to the setting where periods are measured in ∆

units of calendar time with T > 0 denoting the calendar length of time between activity

so that N = T/∆ is the number of periods that elapse between activity. As we can see

from these formulas, the difference between our model and the standard model with T = ∆

comes through the terms ∂ log(m(0))/∂ log(µ) and ∂ log(π)/∂ log(µ) reflecting the elasticities

of the share of money held by active households and of inflation with respect to a money

injection. In the standard model with T = ∆ (i.e., N = 1), a money injection has no effect

in terms of redistributing money holdings across households so that this elasticity is zero and
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the elasticity of inflation with respect to money growth is one. Thus, as we have seen, in this

case, money growth and inflation respond one-for-one with the nominal interest rate and the

real interest rate remains constant. In contrast, with T > ∆ (i.e., N > 1), the elasticity of

the share of money holdings of active households with respect to money growth is positive

and grows large as ∆ → 0. Specifically, we show in the Appendix that, taking the limit as

β/µ̄→ 1, the elasticity of the money share of active agents is approximately:

∂ log(m(0))

∂ log(µ)
=
T/∆− 1

2
. (32)

And, as we showed above, the elasticity of inflation is ∂ log(π)/∂ log(µ) = (T/∆+1)/2(T/∆),

which is less than one for T > ∆ and falls towards 1/2 as ∆→ 0. Plugging in these expressions

for the elasticities gives:

µ̂1 =
2

T/∆ + 1
ı̂0, and π̂1 =

1

T/∆
ı̂0, (33)

and that the real interest rate is:

r̂0 =
T/∆− 1

T/∆
ı̂0. (34)

The size of the response of real interest rates to a change in the nominal interest rate on

impact is measured by (T/∆ − 1)/(T/∆), which is decreasing in ∆. For small ∆, a given

increase in the nominal interest rate gives rise to a nearly one-for-one increase in the real

rate and almost no increase in expected inflation. The small response of inflation to a change

in interest rates comes from segmented asset markets: only the fraction ∆/T (i.e., 1/N) of

households that are active receive the entire increase in the money supply, and so a given

money injection has a disproportionately large impact on the marginal utility of a dollar for

these households. Therefore, for small ∆ a given change in nominal interest rates is obtained

with a small change in money growth because that small change in the money supply has a

large impact on real interest rates. Inflation is sluggish when ∆ is small because this small

change in money growth leads only to a small change in inflation.

In our model, taking ∆ → 0 has two effects that together contribute to the sluggish
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response of inflation — reducing ∆ increases the elasticity of the share of money held by

active households and lowers the elasticity of inflation with respect to a change in money

growth. The more important of these two effects is the first one. To see this, consider a

constant velocity model in which agents are permanently divided into a fraction λ who are

always active and a remaining fraction 1 − λ who are never active, as in Alvarez, Lucas,

and Weber (2001). Then, using the same resolution of the indeterminate price level, the

relationship between real and nominal rates on impact is still given by (31) above. Since

aggregate velocity is constant in this alternative model, ∂ log(π)/∂ log(µ) = 1. It can also be

shown that in this case the elasticity of the share of money held by the permanently active

agents to money growth is ∂ log(m(0))/∂ log(µ) = (1 − λ)/λ. Therefore the response of the

real rate is:

r̂0 = (1− λ)̂ı0. (35)

So if the fraction of agents who are always active in this alternative model is λ = ∆/T

(i.e., λ = 1/N), then the alternative model with constant velocity gives the same response

of inflation on impact to a change in the nominal interest rate as our model with variable

velocity. In this sense, our result that the response of inflation to a change in interest rates

is sluggish is driven by mainly by asset market segmentation and not variable velocity.

For the remainder of this paper, for computational simplicity, we fix the period length

to ∆ = 1 month so that N = T is the calendar length of time between activity in months.

We now present the indeterminacy result that holds in our model.

Proposition 1. Let {i∗t}
∞
t=0 be a given sequence of nominal interest rates and M∗

−1(s) be

the initial distribution of money holdings across households. Let {M∗
t ,M

∗
t (s), c∗t (s), P

∗
t }
∞
t=0

be an equilibrium corresponding to this sequence of interest rates and these initial condi-

tions. Then, for each M0 in an open neighborhood of M∗
0 , there exists a unique equilibrium

{Mt,Mt(s), ct(s), Pt}∞t=0 consistent with the same path of interest rates {i∗t}
∞
t=0 and initial

distribution of money holdings M∗
−1(s). In this alternative equilibrium, for t ≥ N, the distri-
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bution of consumption, money growth, and inflation are unchanged in that

ct(s) = c∗t (s),
Mt+1

Mt

=
M∗

t+1

M∗
t

and
Pt+1

Pt
=
P ∗t+1

P ∗t
.

For periods t = 0, . . . , N − 1, however, the distribution of consumption, money growth, and

inflation all depend on the value of M0.

Proof. See the Appendix. �

This indeterminacy result reduces to the standard indeterminacy result when N = 1.

(See, for example, Woodford 2003b, chapter 2, for an extended discussion.) And since for

each M0 there is a unique alternative equilibrium, even for N > 1 the indeterminacy is one-

dimensional, as in the standard model. However, for N > 1, this indeterminacy result differs

from the standard result in that the distribution of consumption across agents and the path

of money growth and inflation differ across these equilibria for the first N periods. Hence,

for N > 1, this indeterminacy has implications for real quantities and the real interest rate

despite the fact that prices are fully flexible.

4. Quantitative exercises

The set-up used in the previous section, with u(c) = log(c) and γ = 0, simplifies

calculations since individual velocities v(s) are time invariant. In the case where γ > 0

or for general u(c) the dynamics are more complex, since households’ expenditure decisions

will be forward-looking and consequently individual velocities will be time-varying. Below, we

examine the quantitative implications of our model for the persistence of the sluggish response

of prices to money and inflation to interest rates under alternative parameterizations of our

model numerically. We characterize the responses of prices and inflation numerically with

values of the parameters N and γ chosen so that our model reproduces both the average

level of velocity for a broad monetary aggregate held by U.S. households and the fraction of

personal income that is received as wage and salary disbursements.9 We then conduct two

exercises with the model to illustrate its quantitative implications.

9The other parameters we need to assign are standard. We set the length of the time period to be a
month, the time discount factor β = 0.991/12, i.e., a 1% annual rate, and the steady-state money growth to
be µ̄ = 1.011/12 also a 1% annual rate, which is consistent with a 2% annual opportunity cost of money, as
discussed below. We set the coefficient of relative risk aversion to one, i.e., log utility.
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In the first exercise, we examine our model’s quantitative implications for the response

of velocity to changes in money growth. In this experiment, we feed into the model the

sequences of money growth and aggregate consumption shocks observed in U.S. data and

compare the model’s implications for the short-run fluctuations in velocity with those observed

in the data. We find that velocity in the model is highly correlated with velocity in the data.

The magnitude of the fluctuations in the model, however, are significantly smaller than the

magnitude of those observed in the data.

In the second exercise, we examine the responses of money, prices, and velocity in

the model to a monetary policy shock represented as a persistent movement in the nominal

interest rate similar to those estimated as the response of the Federal Funds rate to a monetary

policy shock in the VAR literature. Here we find that the corresponding impulse responses of

money and prices implied by our model are similar to those estimated in the VAR literature.

In particular, inflation in the model responds quite sluggishly to the change in interest rates.

A. Choosing N and γ

In specifying our model, we have assumed that households hold their financial assets in

two separate accounts, which we term a bank account and a brokerage account, respectively.

The bank account is used to purchase consumption and offers a low rate of return on the

assets deposited there while the brokerage account can be used to hold a wide array of high

yielding financial assets. Transfers between the two accounts are assumed to be infrequent.

To map the parameters of the model to observables in the data, we must interpret

the theoretical objects in the model in terms of actual financial institutions in the data. Our

preferred interpretation is to map the bank accounts in the model to what is called “retail

banking” in the data while the brokerage accounts in the model correspond to the array of

actual brokerage accounts, mutual fund shares, pension funds, life insurance reserves, and

equity in non-corporate businesses within which households hold claims on financial assets in

a form that is not readily accessible for consumption purposes. We choose this interpretation

of bank and brokerage accounts in our model based on the observation, documented in the

Appendix, that U.S. households pay a substantial cost (on the order of 2 percentage points)

in terms of foregone interest to hold assets in retail banks relative to short-term Treasury
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securities. The evidence that we present indicates that there is no substantial difference in

the opportunity cost of demand deposits (in M1) and the components of M2 (savings and

time deposits) that we consider as part of our monetary aggregate.

Our interpretation of bank and brokerage accounts differs from the traditional inter-

pretation of Baumol-Tobin models, where withdrawals are made from a safe interest-bearing

asset into cash. Instead, we interpret the bank accounts as a broader monetary aggregate,

and the account from which these transfers are made as one with high-yield managed port-

folios of risky and riskless assets. Our interpretation is the similar to those in the models of

Duffie and Sun (1990) and Abel, Eberly, and Panageas (2007).

We measure U.S. households’ holdings of accounts in retail banks using the Flow of

Funds Accounts.10 From the Flow of Funds Accounts, we observe that U.S. households

hold a large quantity of such accounts — on the order of 1/2 to 2/3 times annual personal

consumption expenditure.

We use the implied average annual level of velocity of 1.5 to 2.0 as one statistic to

guide our choice of N and γ for the quantitative results that follow. The other statistic that

we use is based on our interpretation that the paycheck parameter in the model corresponds

to regular wage and salary income automatically deposited in bank accounts in the data.

Accordingly, as a baseline, we choose γ = 0.6 to match the fraction of personal income that

is received as wage and salary disbursements observed in the data.11

The steady-state velocity implied by our model is a simple function of the parameters

N and γ. In particular, holding N fixed, the model’s implications for steady-state velocity are

an increasing function of the paycheck parameter γ since the automatic deposit of paychecks

into households’ bank accounts allows for faster circulation of money. In the example with

10In terms of measuring the relative sizes of these accounts using data from the Flow of Funds Accounts, our
interpretation corresponds to the following breakdown of the data presented in Table B.100 Balance Sheet of
Households and NonProfit Organizations. Total Financial Assets for households are listed on line 8 ($45,405
billion in 2007). We interpret the line 9 Deposits ($7,334 billion in 2007) as corresponding to assets held in
bank accounts. This category includes checkable deposits and currency, time and savings deposits, and money
market shares. We interpret the remaining financial assets listed under line 14 Credit Market Instruments,
and lines 23-29 including, among other things, corporate equities, mutual fund shares, life insurance reserves,
pension fund reserves, and equity in non-corporate business as corresponding to assets held in the households’
brokerage accounts.

11From Table 2.1 of the National Income and Product Accounts, we observe that this fraction has been
equal to 60% on average over the period 1959-2001.
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u(c) = log(c) and γ = 0 that we used for intuition in the previous sections, with β/µ̄ close to

one, aggregate velocity is given by v̄ = 2/(N+1). With γ > 0, for β/µ̄ close to one, aggregate

velocity is well approximated by v̄ = 2/(N + 1)(1− γ), which increases as γ increases.

Given our choice of γ to match the fraction of personal income that is received as

wage and salary disbursements, we choose the remaining parameter N to match the average

velocity of 1.5 on an annual basis. We choose the length of a period to be one month and as

a baseline use N = 38 so that with γ = 0.6 the model produces an average velocity of 1.5.

With these parameters, our model implies that households transfer money between

their brokerage accounts and bank accounts very infrequently — on the order of only once

every three years. Now we argue that this assumption is not inconsistent with the available

microeconomic evidence on the frequency with which agents trade financial assets held outside

of their bank accounts.

The first set of such microeconomic data concerns the frequency with which households

trade equity. Such data are relevant since a household would have to trade equity to rebalance

its portfolio between funds held in its bank account and equity held in its brokerage account.

The Investment Company Institute (2002) conducted an extensive survey of households’

holdings and trading of equity in 1998 and 2001. They report the frequency with which

households traded stocks and stock mutual funds in each year. Averaging across the 1998

and 2001 surveys, 48% of the households neither bought nor sold stocks, and 68% of the

households neither bought nor sold stock mutual funds in 1998 and 2001. Since a household

would have to buy or sell some of these assets to transfer funds between these higher yielding

assets held in a brokerage account and a lower yielding bank account, these data, interpreted

in light of our model, would indicate choices of N ranging from roughly 24 (for roughly 1/2 of

households trading these risky assets at least once within the year) to roughly 36 (for roughly

1/3 of households trading within the year).12

12These data may also overstate the frequency with which households transfer funds between their equity
accounts and their transactions accounts since some of the instances of equity trading are simply a reallocation
of the equity portfolio. The Investment Company Institute reports that more than 2/3 of those households
that sold individual shares of stock in 1998 reinvested all of the proceeds, while 57% of those households
that sold stock mutual funds reinvested all of the proceeds. In the context of our model, reallocation of the
household portfolio in the asset market is costless and does not generate cash that can be used to purchase
goods.
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The second set of microeconomic data is that presented by Vissing-Jorgensen (2002).

She studies micro data on the frequency of household trading of stocks, bonds, mutual funds,

and other risky assets obtained from the Consumer Expenditure Survey. In figure 6 in her

paper, she shows the fraction of households who bought or sold one of these assets over the

course of one year as a function of their financial wealth at the beginning of the year. She

finds that the fraction of agents who traded one of these assets ranges from roughly 1/3 to

1/2 of the households owning these assets at the beginning of the year. Again, given our

interpretation that households hold stocks, bonds, mutual funds and other risky assets in

their brokerage accounts, these data would lead us to choose N between 24 and 36.

If a higher proportion of income is automatically available for spending (without the

need for a transfer from the brokerage account), so that γ is higher than 0.6, then the

chosen value for N needs to be correspondingly higher to keep steady-state aggregate velocity

constant. For example, to match v̄ = 1.5 annual with the higher γ = 0.7 needs about

N = 52 months. If we interpret our model in terms of a narrower monetary aggregate with

correspondingly faster velocity, then the chosen value of N needs to be lower. For example,

to match v̄ = 2.0 annual with our benchmark γ = 0.6 requires N = 30 months and to match

v̄ = 4.0 annual with γ = 0.6 requires N = 15 months.

B. The response of velocity to U.S. money and consumption shocks

We now study the implications of our model for velocity in the short-run when we

feed in the money growth and aggregate consumption shocks observed in the U.S. data. We

use monthly data on M2 as our measure of the monetary aggregate Mt, and we use monthly

data on the deviation of the log of real personal consumption expenditure from a linear trend

as our measure of the shocks to aggregate endowment yt. To solve for households’ decision

rules in the model, we estimate a VAR relating the current money growth rate and aggregate

consumption to 12 lags of these variables and use this VAR as the stochastic process governing

the exogenous shocks. We then generate the model’s implications for velocity by feeding in

the actual series for these shocks. To compare the implications of our model for the dynamics

of money and velocity in the short-run to the data, we detrend the series implied by the

model using the HP-filter.
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Consider the implications of our model with N = 38 months and γ = 0.6. In Figure

3, we show the HP-filtered series for velocity implied by our model with the corresponding

HP-filtered series for velocity from the data. The correlation between velocity in the model

and the data is 0.6. In the figure, we have used different scales in plotting the series from

the model and the data. These different scales reflect the fact that the standard deviation of

velocity in the model is only 40% of the standard deviation of velocity in the data.

Given that we have used nothing but steady-state information to choose the parameters

of this model, we regard the high correlation between velocity from the model and the data

as a remarkable success. Observe that if we had chosen N = 1, as in a standard cash-in-

advance model, velocity as implied by the model would be constant at one regardless of the

shock process and, hence, the correlation between velocity in the model and velocity in the

data would be zero. We interpret this finding as offering support for the hypothesis that a

substantial portion of the negative correlation between the short-run movements of velocity

and the ratio of money to consumption is due to the endogenous response of velocity to

changes in the ratio of money to consumption.

We obtain broadly similar results with the alternative values of N and γ discussed

above. For example, if we have γ = 0.7 but increase N to 52 to keep v̄ = 1.5 annual, then

the correlation of HP-filtered velocity implied by our model and the correlation of HP-filtered

velocity in the data is still 0.51 (down from 0.60 for the benchmark parameters) while the

standard deviation of velocity in the model rises slightly, to 45% of the standard deviation

of velocity in the data. If instead we keep γ = 0.6 but choose a lower N = 30 to match a

higher velocity of v̄ = 2.0 annual, then the correlation of model and data velocity is 0.56,

almost the same as in the benchmark, but the standard deviation of velocity in the model

falls to 32% of the data. Similarly, if we choose N = 15 to match even higher velocity of

v̄ = 4.0 annual, then the correlation of model and data velocity falls slightly further to 0.48

while the standard deviation of velocity in the model falls to 21% of the data. Reducing N

to match the higher velocities implied by narrower monetary aggregates impairs the ability

of the model to endogenously produce volatile velocity, but does not substantially alter the

correlation between data and model velocity.
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C. The response to a shock to the interest rate

We now consider the response of inflation to a shock to the nominal interest rate.

A large literature estimates the response of the macroeconomy to a monetary policy shock

modeled as a shock to the Federal Funds rate. The consensus in this literature is that a

monetary policy shock is associated with a persistent increase in the short-term nominal

interest rate, a persistent decrease in the money supply and, at least initially, little or no

response in the price level (Christiano, Eichenbaum, and Evans 1999).13

To simulate the effects of a monetary policy shock, we solve for a money growth

path consistent with an exogenous, persistent movement in the short-term nominal interest

rate. This raises two technical issues. First, recall from Proposition 1 that there is an

indeterminacy in this model if the nominal interest rate is exogenous. In equilibrium, there

are many paths for money growth, all consistent with the same exogenously specified path for

nominal interest rates.14 In the quantitative experiment below, we resolve this indeterminacy

in the same way that we did in Section 3. We choose the unique path for money growth that,

on impact, leaves the price level unchanged. A second technical issue is that in this model the

endogenous dynamics with an exogenous nominal interest rate last exactly N periods. The

matrix describing the equilibrium dynamics of endogenous variables has its N eigenvalues all

exactly equal to zero. This implies that, if the interest rate is set at its steady-state value but

the initial distribution of money holdings is not, then steady-state will be reached in exactly

N periods. The repetition of the eigenvalues also implies that the matrix that described

equilibrium dynamics is not diagonalizable, and hence, this model cannot be solved using

standard methods such as those outlined by Blanchard and Kahn (1980) or Uhlig (1999).

In an online technical appendix to this paper we develop a specific solution method for this

model based on the use of the generalized Schur form that makes use of the information that

the eigenvalues of the matrix describing equilibrium dynamics are all equal to zero.15

13See Cochrane (1994), Leeper, Sims, and Zha (1996), Uhlig (2005), and Christiano, Eichenbaum, and
Evans (2005) for additional examples of such estimates.

14The indeterminacy result of Section 3 is for u(c) = log(c) and γ = 0 but extends to the case of general
isoelastic preferences and γ > 0.

15This online technical appendix is available at http://pages.stern.nyu.edu/∼cedmond/. We also found
that direct methods based on use of the generalized Schur form, as suggested by Klein (2000) and others,
did not correctly identify that the matrix describing equilibrium dynamics had eigenvalues all equal to zero.
This appears to be a numerical issue since this methodology should work in cases with repeated eigenvalues.
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We now study the quantitative implications of our model with N = 38 and γ = 0.6,

having solved for money growth consistent with the log of the short-term gross interest rate

following an AR(1) process with persistence ρ = 0.87. This persistence produces a response of

the nominal interest rate to a monetary policy shock similar to that estimated by Christiano,

Eichenbaum, and Evans (1999).

Figure 4 shows the impulse responses of inflation, money growth, and velocity growth

following a persistent increase in the nominal interest rate. The model produces a persistent

liquidity effect both in the sense that an increase in the nominal interest rate is associated

with a fall in money growth and in the sense that an increase in the nominal interest rate

is associated, at least initially, with an increase in the real interest rate of roughly the same

size. While it is not plotted separately, the real interest rate in this figure can be read as the

difference between the impulse response of the nominal interest rate and the impulse response

for inflation. As is clear in the figure, the response of the real interest rate to the change in

the nominal interest rate is quite persistent, and, as a result, inflation is persistently sluggish,

responding only slowly to the increase in the nominal interest rate.

Figure 5 shows the same impulse responses but for the levels of the variables rather

than their growth rates. The aggregate price level appears “sticky,” showing little or no

response to the shock to interest rates for at least the first 12 months. It is only after 12

months have passed that the money stock and the price level begin to rise together in the

manner that would be expected in a flexible price model following a persistent increase in the

nominal interest rate. This slow response of the price level simply reflects the persistently

sluggish response of inflation.

This quantitative exercise indicates that our model can account for a substantial delay

in the response of inflation to an exogenous shock to the nominal interest rate, and it does

so because of the persistent response of the real interest rate to the change in the nominal

interest rate.

5. Conclusion

In this paper, we have put forward a simple inventory-theoretic model of the demand

for money and have shown, in that model, that the price level does not respond immediately
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to an exogenous increase in the money supply and that expected inflation does not respond

immediately to an exogenous increase in the nominal interest rate. Instead, there is an

extended period of price sluggishness that occurs because the exogenous increase in the money

supply leads, at least initially, to an endogenous decrease in the velocity of money and an

extended period of inflation sluggishness that occurs because of asset market segmentation.

We have argued that if this simple model is used to analyze the dynamics of money and

velocity using a relatively broad measure of money, then it produces sluggish responses of

the price level and inflation similar to that estimated in the VAR literature on the response

of the economy to monetary policy shocks.

In keeping this model simple, we have abstracted from a number of issues that might

play an important role in the development of a more complete model. First, we have simply

assumed that households have the opportunity to transfer funds between their brokerage and

bank accounts only every N periods and have not allowed households to alter the timing of

these transactions after paying some fixed cost. This simplifying assumption allowed us to

characterize equilibrium in an analytically tractable specification of our model. A model with

explicit consideration of fixed costs of money transfers between accounts must be computed

numerically. For work along these lines, see Khan and Thomas (2007). In their benchmark

calibrated example, they find that these costs substantially reinforce the sluggishness of prices

and the persistence of liquidity effects relative to that seen in our model.16

Second, we have simply assumed that output is exogenous so as to focus on the impact

of monetary policy on prices and inflation. The impact of monetary policy shocks on output

in a version of our model in which production is endogenous is an important area for future

research. We have shown that monetary policy shocks have a direct impact on real asset prices

in general and on real interest rates in particular. In a model with endogenous production,

these changes in real asset prices would induce firms and workers to shift production and

investment through time. The specific results that would be obtained would clearly depend

on the exact specification of the production structure of the model. In recent work, Edmond

16As Khan and Thomas (2007) emphasize, this result is sensitive to the shape of the idiosyncratic distri-
bution of fixed costs facing households. The reason for this sensitivity is a “selection effect” familiar from
models of price setting subject to menu costs.
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(2003) and King and Thomas (2007) have begun to consider such models.

There is a large literature that looks to model the sluggish responses of prices and

inflation in an alternative framework in which prices are sticky because firms adjust prices

infrequently.17 Our results on the sluggish responses of prices to changes in money and

inflation to changes in the nominal interest rate arise from theoretical mechanisms that are

unrelated to firms’ price setting decisions. Moreover, the empirical phenomena that motivate

our study are also unrelated to the extent of nominal rigidities.

Consider first our results on the sluggish response of prices to changes in the stock

of money. In our model, prices respond sluggishly to changes in money because nominal

expenditure responds sluggishly to changes in money — velocity, which is the ratio of nominal

expenditure to money, falls when money rises. The response of nominal expenditure to a

change in the stock of money is a feature of money demand, not of the extent of nominal

rigidities in terms of firms’ price setting decisions. For example, if one posits money demand

that is interest inelastic as part of a sticky price model, then nominal expenditure will respond

one-for-one with the stock of money regardless of the extent of nominal rigidities assumed

in the model. Thus modeling money demand in our way in a sticky price set-up — where

changes in nominal demand become changes in real output — implies that a given money

supply shock has a smaller real effect on impact but a more persistent real effect than obtained

using an otherwise standard specification of money demand. Researchers using sticky price

models may find it useful to incorporate our model of money demand when they look to

account for the impact of a change in the stock of money on the economy. It is clear from

our Figure 1 that this sluggish response of nominal expenditure to money is an important

component of understanding the dynamics of prices and money in the unconditional U.S.

data. VAR results in Altig et al. (2004) indicate that nominal expenditure also responds

sluggishly to a shock to monetary policy.

Consider next the relationship between our results and the sluggish response of in-

flation to changes in the nominal interest rate relative to those in sticky price models. Our

17This literature includes models in which firms set prices according to time-dependent rules (Fischer 1977,
Taylor 1980, Rotemberg 1982, Calvo 1983), state-dependent rules (Caplin and Leahy 1991, Dotsey, King, and
Wolman 1999, Midrigan 2006, Golosov and Lucas 2007), or, more recently, on the basis of slowly updated
information (Mankiw and Reis 2002, Woodford 2003a).
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model is able to produce a sluggish response of inflation to a persistent shock to the nominal

interest rate due to the segmentation of asset markets. The money injections that implement

a persistent change in the nominal interest rate also lead to a persistent change in the real

interest rate of nearly the same magnitude. Sluggish inflation then follows directly, not as a

consequence of sticky prices, but instead as a consequence of the standard Fisher equation

linking nominal interest rates, real interest rates, and inflation.

In contrast, standard sticky price models have serious problems in reproducing the

estimated responses of inflation to a shock to monetary policy modeled as a persistent shock

to the nominal interest rate. Mankiw (2001), for example, discusses how a standard sticky

price model predicts that the largest response of inflation to a persistent shock to the nominal

interest rate occurs on impact, and not in a delayed fashion. He uses this observation to argue

for a model with “sticky information”. Sims (1998) makes a similar argument.

The difficulty that sticky price models face in generating sluggish inflation arises from

the fact that standard sticky-price models build on a representative household framework

linking the real interest rate to the growth of marginal utility for the representative household,

and hence aggregate consumption, through a consumption Euler equation. Thus, in these

models, if expected inflation responds sluggishly to a change in the nominal interest rate, then

the growth rate of marginal utility for the representative household must respond strongly to

a change in the nominal interest rate. Hence, capturing simultaneously a sluggish response of

expected inflation and aggregate consumption to a change in the short-term nominal interest

rate has been a challenge for these models. Frontier sticky price models, such as Christiano,

Eichenbaum, and Evans (2005), use time non-separable preferences and an elaborate set of

adjustment costs and shocks to help their model reproduce a specific set of impulse responses,

including the sluggish response of inflation. Canzoneri, Cumby, and Diba (2007), however,

observe that standard sticky price models equate the nominal interest rate targeted by the

central bank with the interest rate implied by the representative household’s consumption

Euler equation and that this assumption fails quite dramatically in the data even if one

considers a wide array of time non-separable preferences for the household. They find a

negative correlation between the Federal Funds rate in the data and the short-term nominal

interest rates implied by a wide variety of sticky-price models’ consumption Euler equations.
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By contrast, our model abandons the assumption of a representative household for

pricing assets. In our model, the real interest rate is linked to the growth of marginal utility

for active households, not for a representative household consuming aggregate consumption.

Hence, as we have seen in our model, we can produce a sluggish response of expected inflation

to a change in the nominal interest rate even if aggregate consumption is constant and hence

has no response at all to a change in the nominal interest rate. Researchers using models

with nominal rigidities may find it useful to incorporate asset market segmentation of the

kind we examine here in their models in addressing some of the difficulties their models have

with the consumption Euler equation.

References

Abel, Andrew B., Janice C. Eberly, and Stavros Panageas. 2007. Optimal inattention to the

stock market. American Economic Review 97 (May): 244-249.

Altig, David, Lawrence J. Christiano, Martin Eichenbaum, and Jesper Linde. 2004. Firm-

specific capital, nominal rigidities and the business cycle. Working Paper 04-16. Fed-

eral Reserve Bank of Cleveland.

Alvarez, Fernando, and Andrew Atkeson. 1997. Money and exchange rates in the Grossman-

Weiss-Rotemberg model. Journal of Monetary Economics 40 (December): 619-640.

Alvarez, Fernando, Andrew Atkeson, and Patrick J. Kehoe. 2002. Money, interest rates, and

exchange rates with endogenously segmented markets. Journal of Political Economy

110 (February): 73-112.

Alvarez, Fernando, Andrew Atkeson, and Patrick J. Kehoe. 2007. Time-varying risk, interest

rates, and exchange rates in general equilibrium. Research Department Staff Report

371. Federal Reserve Bank of Minneapolis.

Alvarez, Fernando, Robert E. Lucas, Jr., and Warren E. Weber. 2001. Interest rates and

inflation. American Economic Review 91 (May): 219-225.

Barro, Robert J. 1976. Integral constraints and aggregation in an inventory model of money

demand. Journal of Finance 31 (March): 77-88.

Baumol, William J. 1952. The transactions demand for cash: an inventory theoretic approach.

Quarterly Journal of Economics 66 (November): 545-556.

40



Blanchard, Olivier Jean, and Charles M. Kahn. 1980. The solution of linear difference models

under rational expectations. Econometrica 48 (July): 1305-1311.

Calvo, Guillermo A. 1983. Staggered prices in a utility maximizing framework. Journal of

Monetary Economics 12 (September): 383-398.

Canzoneri, Matthew B., Robert E. Cumby, and Behzad T. Diba. 2007. Euler equations

and money market interest rates: a challenge for monetary policy models. Journal of

Monetary Economics 54 (October): 1863-1881.

Caplin, Andrew, and John Leahy. 1991. State-dependent pricing and the dynamics of money

and output. Quarterly Journal of Economics 106 (August): 683-708.

Chatterjee, Satyajit, and Dean Corbae. 1992. Endogenous market participation and the

general equilibrium value of money. Journal of Political Economy 100 (June): 615-

646.

Chiu, Jonathan. 2007. Endogenously segmented asset market in an inventory-theoretic model

of money demand. Working Paper 2007-46. Bank of Canada.

Christiano, Lawrence, Martin Eichenbaum, and Charles Evans. 1999. Monetary policy

shocks: what have we learned and to what end? In Handbook of Macroeconomics,

ed. Michael Woodford and John Taylor. Amsterdam: North-Holland.

Christiano, Lawrence, Martin Eichenbaum, and Charles Evans. 2005. Nominal rigidities and

the dynamic effects of a shock to monetary policy. Journal of Political Economy 113

(February): 1-45.

Clark, Timothy, Astrid Dick, Beverly Hirtle, Kevin J. Stiroh, and Robard Williams. 2007.

The role of retail banking in the U.S. banking industry: risk, return, and industry

structure. Federal Reserve Bank of New York Economic Policy Review 13 (December):

39-56.

Cochrane, John H. 1994. Shocks. Carnegie-Rochester Conference Series on Public Policy 41

(December): 295-364.

Dotsey, Michael, Robert G. King, and Alexander L. Wolman. 1999. State-dependent pricing

and the general equilibrium dynamics of money and output. Quarterly Journal of

Economics 114 (May): 655-690.

Duffie, Darrell, and Tong-Sheng Sun. 1990. Transactions costs and portfolio choice in

41



a discrete-continuous-time setting. Journal of Economic Dynamics and Control 14

(February): 35-51.

Edmond, Chris. 2003. Sticky prices versus sticky demand. Manuscript. University of

Melbourne.

Federal Reserve Board. 2002. Flow of Funds Accounts of the United States.

Fischer, Stanley. 1977. Long-term contracts, rational expectations, and the optimum money

supply rule. Journal of Political Economy 85 (February): 191-205.

Golosov, Mikhail, and Robert E. Lucas, Jr. 2007. Menu costs and Phillips curves. Journal

of Political Economy 115 (April): 171-199.

Grossman, Sanford J., and Laurence Weiss. 1983. A transactions-based model of the mone-

tary transmission mechanism. American Economic Review 73 (December): 871-880.

Investment Company Institute. 2002. Equity Ownership in America.

Jovanovic, Boyan. 1982. Inflation and welfare in the steady state. Journal of Political

Economy 90 (June): 561-577.

Khan, Aubhik, and Julia K. Thomas. 2007. Inflation and interest rates with endogenous

market segmentation. Working Paper 07-1. Federal Reserve Bank of Philadelphia.

King, Robert G., and Julia K. Thomas. 2007. Breaking the new Keynesian dichotomy: asset

market segmentation and the monetary transmission mechanism. Manuscript. Ohio

State University.

Klein, Paul. 2000. Using the generalized Schur form to solve a multivariate linear rational

expectations model. Journal of Economic Dynamics and Control 24 (September):

1405-1423.

Leeper, Eric M., Christopher A. Sims, and Tao Zha. 1996. What does monetary policy do?

Brookings Papers on Economic Activity 2: 1-78.

Lucas, Robert E., Jr. 1978. Asset prices in an exchange economy. Econometrica 46 (Novem-

ber): 1429-1445.

Mankiw, N. Gregory. 2001. The inexorable and mysterious tradeoff between inflation and

unemployment. Economic Journal 111 (May): C45-C61.

Mankiw, N. Gregory, and Ricardo Reis. 2002. Sticky information versus sticky prices: a

proposal to replace the new Keynesian Phillips curve. Quarterly Journal of Economics

42



117 (November): 1295-1328.

Midrigan, Virgiliu. 2006. Menu costs, multi-product firms, and aggregate fluctuations.

Manuscript. Federal Reserve Bank of Minneapolis.

Ravn, Morten O., and Harald Uhlig. 2002. On adjusting the Hodrick-Prescott filter for the

frequency of observations. Review of Economics and Statistics 84 (May): 371-380.

Romer, David. 1986. A simple general equilibrium version of the Baumol-Tobin model.

Quarterly Journal of Economics 101 (November): 663-686.

Rotemberg, Julio J. 1982. Monopolistic price adjustment and aggregate output. Review of

Economic Studies 49 (October): 517-531.

Rotemberg, Julio J. 1984. A monetary equilibrium model with transactions costs. Journal

of Political Economy 92 (February): 40-58.
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Appendix

A1. Data
All data are monthly 1959:1-2006:12 and seasonally adjusted. We measure the price

level P as the personal consumption expenditures chain-type price index with a base year

of 2000 from the Bureau of Economic Analysis (BEA). We measure real consumption c as

personal consumption expenditure on nondurables and services from the BEA deflated by

P . We measure the money supply M as the M2 stock from the Board of Governors of the

Federal Reserve System. We define velocity as v ≡ Pc/M .

Alternative measures of the short-run correlation of money and velocity

Here we document the robustness of the negative correlation between log(M/c) and

log(v) using alternative detrending methods to characterize the short-run fluctuations in

money and velocity. We report statistics for HP-filtered data based on the smoothing pa-

rameter λ = 1600 × 34 recommended by Ravn and Uhlig (2002) for monthly data. These

are the statistics reported in the main text. In Table 1, we also report statistics for the

lower smoothing parameter λ = 1600×32 and for monthly differences and annual differences.

No matter how the short-run fluctuations are measured, we find that there is a pronounced

negative correlation between log(M/c) and log(v) and that the standard deviation of log(v)

is almost as high as or higher than the standard deviation of log(M/c).

HP-filtered differenced
1600× 32 1600× 34 monthly annual

Correlation −0.91 −0.86 −0.88 −0.63
Standard deviation 1.25 1.33 1.01 0.98

Table 1: Correlation and relative standard deviation of log(v) to log(M/c) based on alterna-
tive measures of short-run fluctuations.

Evidence on opportunity cost of holding broad money

We measure the opportunity costs of monetary assets using data collected by the

Monetary Services Index project of the Federal Reserve Bank of St Louis. We measure the

opportunity cost of an asset as the short-term Treasury rate less the own rate of return

on the asset in question. We take the short-term Treasury rate and own rates of return

on currency and demand deposits from the spreadsheet ADJSAM.WKS available from the

website of the Federal Reserve Bank of St Louis. We take the own rate of return on M2

from the Board of Governors of the Federal Reserve System. All opportunity cost data are

monthly 1959:1-2006:2 and seasonally adjusted.

As is clear from Table 2, the average opportunity cost of holding demand deposits and

45



1959-2006 1959-1990 1990-2006

Currency 4.91 5.61 3.45
Demand deposits 1.80 2.25 0.85
M2 2.08 2.30 1.64

Table 2: Opportunity costs of various monetary assets. All opportunity costs measured as
the average short-term Treasury rate less own rate reported in percentage points.

M2 is roughly similar, on the order of 200 basis points. Both opportunity costs have fallen

somewhat in recent years.

A2. Algebra of steady-state money distribution and elasticities
Let the length of a period be ∆ > 0 measured in fractions of a year. Let the length

of time between periods of activity be T such that the number of periods between periods of

inactivity is N = T/∆. Let period utility be u(c) = log(c) and set the paycheck parameter

to γ = 0. In this setting, individual velocity in period t is time-invariant and given by

v(s)∆ = (1− β∆)/(1− β∆(N−s)) for s = 0, 1, ..., N − 1.

For households s = 1, ..., N − 1 the distribution of money holdings satisfies:

Mt(s)

Mt

= [1− v(s− 1)∆]
Mt−1(s− 1)

Mt

1

µ∆
t

, (A1)

with money market clearing implying:

1

N

Mt(0)

Mt

= 1− 1

N

N−1∑
s=1

[1− v(s− 1)∆]
Mt−1(s− 1)

Mt

1

µ∆
t

. (A2)

Steady-state money distribution and aggregate velocity

Now consider a steady-state with µt = µ̄. Iterating on the steady-state version of (A1)

and using the formula for individual velocity shows that the steady-state money holdings of

household s are related to the holdings of an active household by:

M(s)

M
=

1

µ̄∆s

s−1∏
i=0

(1− v(i)∆)
M(0)

M
. (A3)

And since

s−1∏
i=0

(1− v(i)∆) =
s−1∏
i=0

β∆ 1− β∆(N−i−1)

1− β∆(N−i) = β∆s1− β∆(N−s)

1− β∆N
,
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we have:

M(s)

M
=

(
β

µ̄

)∆s
1− β∆(N−s)

1− β∆N

M(0)

M
. (A4)

We now need to find M(0)/M . We do this using steady-state money market clearing:

1

N

M(0)

M
= 1− 1

N

N−1∑
s=1

M(s)

M
= 1− 1

N

N−1∑
s=1

M(0)

M

(
β

µ̄

)∆s
1− β∆(N−s)

1− β∆N
, (A5)

and so:

1 =
1

N

M(0)

M

N−1∑
s=0

(
β

µ̄

)∆s
1− β∆(N−s)

1− β∆N
. (A6)

Computing the sums and rearranging gives the solution:

1

N

M(0)

M
= (1− β∆N)

[
1− (β/µ̄)∆N

1− (β/µ̄)∆
− β∆N 1− (1/µ̄)∆N

1− (1/µ̄)∆

]−1

. (A7)

Plugging this formula for M(0)/M into equation (A4) gives the complete solution for the

steady-state distribution of money holdings. Steady-state aggregate velocity at an annual

rate is then given by:

v̄ =
1

N

N−1∑
s=0

v(s)
M(s)

M
. (A8)

We can use the formula for individual velocity in each period to simplify the terms in the

sum. For each s we have:

v(s)
M(s)

M
=

1

∆

1− β∆

1− β∆(N−s)

(
β

µ̄

)∆s
1− β∆(N−s)

1− β∆N

M(0)

M
=

1

∆

1− β∆

1− β∆N

(
β

µ̄

)∆s
M(0)

M
.

And so, using the formula for M(0)/M given in equation (A7) and then summing over s, we

have:

v̄ =
1− β∆

∆

[
1− β∆N

(
1− (1/µ̄)∆N

1− (1/µ̄)∆

1− (β/µ̄)∆

1− (β/µ̄)∆N

)]−1

. (A9)

To develop intuition, we simplify these formulas by studying a steady-state with µ̄ = 1

in the limit as β → 1. We begin with the further special case of ∆ = 1 month so that we

can quickly derive the main formulas used in the text and then return to the case of general

∆ > 0 at the end.
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With this extra structure, the steady-state money holdings of household s are related

to the holdings of an active household by:

M(s)

M
=
N − s
N

M(0)

M
.

And so, on using this formula in money market clearing, we also get M(0)/M = 2N/(N + 1)

so that we have the complete solution for the distribution of money holdings:

M(s)

M
= 2

N − s
N + 1

, (A10)

for s = 0, 1, ..., N − 1. Steady-state aggregate velocity is then:

v =
1

N

N−1∑
s=0

v(s)
M(s)

M
=

1

N

N−1∑
s=0

2

N − s
N − s
N + 1

=
2

N + 1
, (A11)

as used in the main text.

Elasticities with respect to money growth

Continuing with this special case of ∆ = 1 month, we now derive the elasticity of

aggregate velocity with respect to money growth. Specifically using money market clearing

and the law of motion for the money holdings we have:

vt =
1

N

N−1∑
s=0

v(s)
Mt(s)

Mt

= v(0)

[
1− 1

N

N−1∑
s=1

Mt(s)

Mt

]
+

1

N

N−1∑
s=1

v(s)
Mt(s)

Mt

= v(0) +
1

N

N−1∑
s=1

[v(s)− 1]
Mt(s)

Mt

= v(0) +
1

N

N−1∑
s=1

[v(s)− 1][1− v(s− 1)]
Mt−1(s− 1)

Mt−1

1

µt
.

And so:

vtµt = v(0)µt +
1

N

N−1∑
s=1

[v(s)− 1][1− v(s− 1)]
Mt−1(s− 1)

Mt−1

, (A12)

which gives the key result:

∂

∂µt
(vtµt) = v(0), (A13)
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a constant for all t. Using the product rule ∂(vtµt)/∂µt = (∂vt/∂µt)µt + vt we can solve for

the elasticity in terms of v(0), a known constant, and aggregate velocity. We evaluate this

elasticity at steady-state vt = v̄ to get:

∂ log(v)

∂ log(µ)
=
v(0)

v
− 1 = −1

2

N − 1

N
. (A14)

And since the aggregate endowment y is constant, the elasticity of inflation with respect to

money growth evaluated at steady-state is:

∂ log(π)

∂ log(µ)
=
∂ log(v)

∂ log(µ)
+ 1 =

v(0)

v
=

1

2

N + 1

N
. (A15)

We now derive the elasticity of the share of money held by active households with

respect to money growth. Multiplying equation (A2) by Mt and differentiating both sides

with respect to Mt we get:

∂Mt(0)

∂Mt

= N.

So that evaluated at steady-state:

∂ log(M(0))

∂ log(µ)
= N

M

M(0)
= N

N + 1

2N
=
N + 1

2
.

Now let m(0) ≡M(0)/M denote the steady-state money share. Then we have:

∂ log(m(0))

∂ log(µ)
=
∂ log(M(0))

∂ log(µ)
− 1 =

N + 1

2
− 1 =

N − 1

2
. (A16)

To obtain the expressions with arbitrary ∆ used in the main text, set N = T/∆ in equations

(A14)-(A16). More formally, use the expression for v̄ in equation (A9) and calculate the limit

as β/µ̄→ 1 using l’Hôpital’s rule.

A3. Dynamic response of velocity to a money growth shock
Here we analytically characterize the impulse response of velocity to a money growth

shock. The dynamics of velocity following a money growth shock are determined by the

subsequent evolution of the distribution of money over time. It is easiest to analyze the

dynamics of velocity following a shock in a log-linearized version of the model. We proceed

in two steps. First, we provide an autoregressive moving average (ARMA) representation of

the dynamics of the money distribution. Second, we map the ARMA representation into a

formula for the impulse response of velocity that is exact (up to the log-linearization) for the

first N − 1 periods after a shock. For simplicity we consider only the special case of a period
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length ∆ = 1 month.

ARMA representation

Two sets of equations govern the dynamics of the distribution of money. First, there

is an equation requiring that the sum of the log deviations of the fractions of money held by

agents of type s is zero:

0 = m(0)m̂t(0) +
N−1∑
s=1

m(s)m̂t(s),

where steady-state money shares are m(s) ≡M(s)/M and m̂t(s) ≡ log[mt(s)/m(s)]. Second,

there is a set of equations for s = 1, ..., N − 1 governing the evolution of the money shares:

m̂t(s) = m̂t−1(s− 1)− µ̂t,

where these equations follow from the fact that individual velocities v(s) are time-invariant.

Rearranging the first equation and using m(s) = 2(N − s)/(N + 1) we have for active

households:

m̂t(0) = −
N−1∑
s=1

m(s)

m(0)
m̂t(s) = −

N−1∑
s=1

N − s
N

m̂t(s),

and after iterating on the transitions for inactive households:

m̂t(s) = m̂t−s(0)−
s∑

k=1

µ̂t−k+1,

for s = 1, ..., N − 1. Combining these gives an ARMA representation of the dynamics of the

money distribution:

m̂t(0) = −
N−1∑
s=1

N − s
N

m̂t−s(0) +
N−1∑
s=1

N − s
N

s∑
k=1

µ̂t−k+1.

Impulse response for velocity

The log deviation of velocity can be written:

v̂t =
1

N

N−1∑
s=0

m̂t(s),
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using v(s)m(s) = 2/(N + 1) = v̄ for all s. Differencing this once and simplifying gives

∆v̂t =
1

N

N−1∑
s=0

∆m̂t(s) =
1

N

[
m̂t(0)− m̂t−N(0)− (N − 1)µ̂t +

N−1∑
s=1

µ̂t−s

]
,

which repeatedly uses m̂t−1(s− 1) = m̂t(s) + µ̂t to cancel terms in the sum. Let the economy

start in steady-state for t < 0 and consider a given shock µ̂t at date t with µ̂t+k = 0 for all

k > 0. For the first N − 1 periods after a shock, the terms m̂t−N(0) and the sum
∑N−1

s=1 µ̂t−s
are zero so that ∆v̂t = [m̂t(0)−(N−1)µ̂t]/N . We can solve this for m̂t(0) = N∆v̂t+(N−1)µ̂t
and use the ARMA representation for the money share of active households to get an ARMA

representation of velocity growth that is exact for the first N − 1 periods:

∆v̂t = −
N−1∑
s=1

N − s
N

∆v̂t−s −
1

2

N − 1

N
µ̂t,

(using µ̂t−s = 0 for the first N − 1 periods). Rearranging terms to write this in levels we get:

v̂t =
1

N

N−1∑
s=1

v̂t−s −
1

2

N − 1

N
µ̂t,

(this time using v̂t−N = 0 for the first N−1 periods). When N is large so that (N−1)/N ≈ 1

this implies the impulse response of the log of velocity over the first N − 1 periods is given

by

v̂t+k =
1

2

(
1 +

1

N

)k+1

− 1. (A17)

This starts with v̂t = −1/2, for large N it crosses zero at roughly k = N log(2) and then rises

above zero until k = N.

A4. Proof of indeterminacy proposition
Using that u(c) = log(c)and γ = 0 so that Ptct (0) = v(0)Mt(0), and that:

u′(ct(0))

Pt
=

1

ct (0)Pt
=

1

v (0)Mt (0)
,

the sequence of Mt (0) that supports the interest rate {i∗t}
∞
t=0 must satisfy:

Mt+1 (0)

Mt (0)
= (1 + i∗t ) β, t = 0, 1, ...
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or:

Mt+1 (0) = M0 (0) βt
t∏

j=0

(
1 + i∗j

)
. (A18)

For future reference, we can write equation (A18) as:

Mt−1−s (0) = M0 (0) βt−1−s−1

t−1−s−1∏
j=0

(
1 + i∗j

)
, (A19)

which applies if t− 1− s ≥ 0 or s ≤ t− 1.

Now again using that u (c) = log (c) and γ = 0 we have:

Mt (s) = (1− v (s− 1))Mt−1 (s− 1) , s = 1, ..., N,

which we can substitute into:

Mt (0) = NMt −
N−1∑
s=1

(1− v (s− 1))Mt (s− 1) ,

to obtain:

Mt (0) = N (Mt −Mt−1) +
N−1∑
s=0

θs Mt−1−s (0) , (A20)

where the coefficients θs are given by θs ≡ v (s)
[∏s−1

j=0 (1− v (j))
]
> 0.

It is easy to verify that any sequence of {Mt −Mt−1} for t ≥ 0 and {Mt (0)} for

t ≥ −N + 1 that solves equation (A20) completely characterizes an equilibrium.

Now we specialize equation (A20) for three different types of time periods. For t = 0

we have:

M0 (0) = N
(
M0 −M∗

−1

)
+

N−1∑
s=0

θs M
∗
−1−s (0) . (A21)

For t = 1, 2, ..., N − 1 we can break the sum in two parts and use the expression for
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Mt−1−s (0) in terms of interest rates, equation (A19), so we have:

Mt (0) (A22)

= N (Mt −Mt−1) +
t−1∑
s=0

θs Mt−1−s (0) +
N−1∑
s=t

θs M
∗
t−1−s (0)

= N (Mt −Mt−1) +
t−1∑
s=0

θs M0 (0) βt−1−s−1

t−1−s−1∏
j=0

(
1 + i∗j

)
+

N−1∑
s=t

θs M
∗
t−1−s (0) ,

and using the expression for the interest rate equation (A18) again:

M0 (0) βt−1

t−1∏
j=0

(
1 + i∗j

)
(A23)

= N (Mt −Mt−1) +
t−1∑
s=0

θs M0 (0) βt−1−s−1

t−1−s−1∏
j=0

(
1 + i∗j

)
+

N−1∑
s=t

θs M
∗
t−1−s (0) .

Finally, for t = N,N + 1, ... we have:

Mt (0) = N (Mt −Mt−1) +
N−1∑
s=0

θs M0 (0) βt−1−s−1

t−1−s−1∏
j=0

(1 + ij) ,

and inserting the expression for Mt (0) based on the interest rates:

M0 (0) βt−1

t−1∏
j=0

(
1 + i∗j

)
(A24)

= N (Mt −Mt−1) +
N−1∑
s=0

θs M0 (0) βt−1−s−1

t−1−s−1∏
j=0

(1 + ij) .

Now we are ready to construct the path of the remaining variables for an equilibrium that

support the interest rate path {i∗t}
∞
t=0 . We do this in three steps, one for each type of time

period. We do this for an arbitrary value of M0.

Step a. Solve for M0 (0) . For t = 0, M0 (0) is a function of predetermined variables,

M∗
−1,M

∗
j (0) for j < 0, and M0. Thus for the given value of M0 there is a unique value of

M0 (0) .

Step b. Solve for Mt (0) and Mt for t = 1, ..., N−1. Equation (A23) gives one equation

in one unknown, namely Mt −Mt−1, given M0 (0) . Using these equations recursively, using

the initial conditions M0 found in step a, we can solve for M1, ...,MN−1.

Step c. Solve for Mt for t ≥ N. Given the initial condition MN−1 found in step b,

equation (A24) can be used to solve for Mt for t ≥ N.

Steps a through c show that for any given M0 there is a unique way to construct an
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equilibrium that support the path of interest rates {i∗t}
∞
t=0 .

We now show that for any equilibrium that supports the interest rate sequence {i∗t}
∞
t=0,

the distribution of cash Mt (s) /Mt for s = 0, ..., N−1 for all t ≥ N is the same. Using equation

(A18) for t ≥ N in:

Mt (0) = NMt −
N−1∑
s=1

(1− v (s− 1))Mt (s− 1) ,

we obtain:

Mt (0) = NMt −
N−1∑
s=1

(1− v (s− 1))
s−1∏
k=1

v (k)Mt−k (0) ,

and using equation (A18) we get:

M0 (0) βt−1

t−1∏
j=0

(
1 + i∗j

)
= NMt −

N−1∑
s=1

(1− v (s− 1))
s−1∏
k=1

v (k)M0 (0) βt−k−1

t−k−1∏
j=0

(
1 + i∗j

)
,

which shows that the path of Mt is proportional to M0 (0) for t ≥ N. Finally, equation (A18)

implies the path of Mt (s) is proportional to M0 (0) , which establishes the desired result. This

in turn immediately implies that Mt (s) /Mt = M∗
t (s) /M∗

t and Mt+1/Mt = M∗
t+1/M

∗
t , and

thus that ct (s) = c∗t (s) Pt+1/Pt = P ∗t+1/P
∗
t for t ≥ N.

Finally, the qualification that M0 has to be close to M∗
0 ensures that in the values

constructed for Mt (0) during the periods t = 0, ..., N − 1 are all strictly positive. �
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Figure 1: Short run negative correlation of M/c and v

log(v)

log(M/c) correlation between log(M/c) and log(v) = −0.9
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Figure 2: Money up, velocity down, prices sluggish
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Figure 3: Model and data velocity (deviations from HP trend)
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Figure 4: Large liquidity effects
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Figure 5: Sluggish price response to persistent interest rate shock
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