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ABSTRACT

We exposit the link between money, velocity and prices in an inventory-theoretic model of the

demand for money and explore the extent to which such a model can account for the short-run

volatility of velocity, the negative correlation of velocity and the ratio of money to consumption, and

the resulting "stickiness" of the aggregate price level relative to a benchmark model with constant

velocity. We find that an inventory-theoretic model of the demand for money is a natural framework

for understanding these aspects of the dynamics of money, velocity and prices in the short run.
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1. Introduction
In this paper, we examine the dynamics of money, velocity, and prices in an inventory-

theoretic model of the demand for money. Data on the price level, the nominal money stock

and real consumption are linked by an exchange equation of the form P = vM/c, where P is

the price level, v is the velocity of money, and M/c is the ratio of the stock of money to real

consumption expenditure. The long run behavior of these series differs markedly from their

short run behavior. For example, over the last 40 years in the United States, the price level

P has grown roughly in parallel with the ratio of a broad measure of money to consumption,

while the velocity of money has moved very little in comparison to these other series. In

contrast, during this same time period, the short run fluctuations of the ratio of money to

consumption are strongly negatively correlated with the short run fluctuations in velocity. As

a consequence of this negative correlation of money and velocity in the short-run, fluctuations

in the price level P are not that highly correlated with fluctuations in M/c. We show that

a simple inventory-theoretic model of money demand can account, at least qualitatively, for

both the stability of velocity in the long run and the strong negative correlation of money and

velocity in the short run. In this model, an exogenous increase in the money supply leads to

an endogenous decline in the velocity of money, and as a result, the price level responds less

than one-for-one to the change in the money supply. Hence, in comparison to a benchmark

model in which the velocity of money is constant, prices in this model are sticky. We argue

that this model of money demand offers a novel explanation for the short-run sluggishness of

prices.

In Figure 1, we illustrate the long-run behavior of money, velocity, and prices. There

we plot the log of the ratio of M2 to personal consumption expenditure for M/c, the log of

the personal consumption expenditure deflator for P, and the log of the implied consumption

velocity of M2 observed in monthly data from the United States over the last 40 years. In

that figure, we see that that the price level P has risen substantially along with the ratioM/c

while velocity has remained relatively stable. In Figure 2, we illustrate the short-run behavior

of money and velocity. There we plot the deviations of M/c and v, measured as above, from

their HP filtered trends. As is readily apparent, these two series are strongly negatively



correlated.1 In Figure 3, we plot the deviations of M/c and P from their HP-filtered trends.

As one might expect given the strong negative correlation of money and velocity observed

in Figure 2, the short-run fluctuations in prices are not that closely linked to the short-run

fluctuations in M/c.

Our model is inspired by the analyses of money demand developed by Baumol (1952)

and Tobin (1956). In their models, agents carry money (despite the fact that money is

dominated in rate of return by interest bearing assets) because they face a fixed cost of

trading money and these other assets. Our model is a simplified version of their framework.

We study a cash-in-advance model in which the asset market and the goods market are

physically separated. Households in the model have two financial accounts: a brokerage

account in the asset market in which they hold a portfolio of interest bearing assets and

a bank account in the goods market in which they hold money to pay for consumption.

We modify this standard cash-in-advance model by assuming that households do not have

the opportunity to exchange funds between their brokerage and bank accounts every period.

Instead, we assume that they have the opportunity to transfer funds between these accounts

only once every N periods.2 Hence, households maintain an inventory of money in their bank

account large enough to pay for consumption expenditures for several periods. They replenish

this inventory with a transfer of funds from their brokerage account once every N periods. As

households manage this inventory of money optimally, their money holdings follow a sawtooth

pattern – rising rapidly with each periodic transfer of funds from their brokerage account

and then falling slowly as these funds are spent smoothly over time – similar to the sawtooth

pattern of money holdings derived by Baumol (1952) and Tobin (1956).

In this model, the velocity of money fluctuates around a steady-state value that is

determined by the parameter N governing the frequency with which households have the

opportunity to transfer funds between their brokerage and bank accounts. Hence, in our

model, in the long-run, as the stock of money grows relative to consumption the price level

grows by roughly the same amount and velocity remains relatively constant.

1In applying the HP-filter, we used a parameter of 32 ∗ 1600 = 14400 for monthly data. One obtains
similar results using 12 month differenced data as opposed to HP filtered data to characterize the short-run
fluctuations in money and velocity.

2Grossman and Weiss (1983) and Rotemberg (1984) solve similar models with N = 2.
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Our inventory-theoretic model of money demand also has implications for the short

run; it provides a natural accounting for the negative correlation of fluctuations in the ratio

of money to consumption and velocity and hence for the corresponding sluggishness of prices.

These short run implications of the model can be understood in two steps. First, consider

how aggregate velocity is determined in this inventory-theoretic model of money demand.

Households at different points in the cycle of depleting and replenishing their inventories of

money in their bank accounts have different propensities to spend the money that they have

on hand, or, equivalently, different individual velocities of money. Those households that

have recently transferred funds from their brokerage account to their bank account will have

a large stock of money in their bank account and will tend to spend this stock of money

slowly to spread their spending smoothly over the interval of time that remains before they

next have the opportunity to replenish their bank account. Hence, these households will have

a relatively low individual velocity of money. In contrast, those households that have not

had the opportunity to transfer funds from their brokerage account in the recent past and

anticipate having the opportunity to make such a transfer soon will tend to spend the money

that they have in the bank at a relatively rapid rate, and thus have a relatively high individual

velocity of money. Aggregate velocity at any point in time is determined by the weighted

average of these individual velocities of money of all of the households in the economy, with

the weights determined by the distribution of money holdings across households.

Now consider the effects on aggregate velocity of an increase in the money supply

brought about by an open market operation that occurs in some period t. In this open

market operation, the government trades newly created money for interest bearing securities

and households, on the opposite side of the transaction, trade interest bearing securities held

in their brokerage accounts for newly created money. In any period in which the nominal

interest rate is positive, this new money is purchased only by those households that currently

have the opportunity to transfer funds from their brokerage account to their bank account

since these are the only households that currently have the opportunity to begin spending

this money. All other households choose not to participate in the open market operation since

these households would have to leave this money sitting idle in their brokerage accounts where

it would be dominated in rate of return by interest bearing securities. Hence, as a result of this
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open market operation, the fraction of the money stock held by those households currently

able to transfer resources from their brokerage account to their bank account rises. Since these

households have a lower-than-average propensity to spend this money, aggregate velocity falls.

In this way, an exogenous increase in the supply of money leads to an endogenous reduction

in the aggregate velocity of money and hence, a diminished, or sluggish, response of the price

level.

We show that the response of velocity and the price level in our model to a one percent

increase in the money supply depends on the frequency with which households replenish their

bank accounts with transfers of funds from their brokerage accounts in the asset market as

determined by the parameter N. With N = 1, as in a standard cash-in-advance model in

which households can reallocate their wealth between interest bearing assets in their brokerage

accounts in the asset market and money in their bank accounts in the goods market every

period, a one percent increase in the money supply relative to the aggregate endowment has

no impact on the velocity of money and, hence, leads immediately to a one percent increase

in the price level. As N grows, the impact of a one percent increase in the money supply on

velocity rapidly approaches −1/2 percent, so, on impact, this increase in the money supply
leads to an increase in the price level of only 1/2 percent. This sluggish response of the

price level is persistent because it takes time for the original one percent increase in the stock

of money to work its way through households’ inventories. Specifically, for large N, velocity

remains below its steady-state level, and hence prices adjust less than one percent, for roughly

N log(2) time periods. After that time, velocity and prices overshoot their steady-state levels

before converging in a series of dampened oscillations.

The parameter N governing the frequency with which households replenish their bank

accounts also determines our model’s implications for aggregate velocity in the steady-state

– since this parameter determines the size of the inventory of money that households must

hold to purchase their consumption. Thus, the empirical implications of our model for the

sluggishness of prices are determined to a large extent by one’s definition of money (since that

definition determines one’s measure of velocity and hence one’s choice of N). In our simple

model, defining money comes down to answering the question: What assets correspond to

those that households in the model hold in their bank accounts and what assets do households
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hold and trade less frequently in their brokerage accounts?

We examine the empirical implications of our model using a broad measure of money:

U.S. households’ holdings of currency, demand deposits, savings deposits, and time deposits.

In the data, U.S. households hold a large stock of such accounts, roughly 1/2 to 2/3 of annual

personal consumption expenditure. They pay a large opportunity cost in terms of forgone

interest to hold such accounts – on the order of 150-200 basis points. We choose to aggregate

demand, savings, and time deposits because the opportunity cost to households does not

appear to vary systematically across these three different types of accounts. To parameterize

our model to match the observed ratio of US households’ holdings of this broad measure

of money relative to their personal consumption expenditure, we assume that households in

our model transfer funds between their brokerage and bank accounts very infrequently – on

the order of one every one and a half to three years. We argue that this assumption is not

inconsistent with evidence summarized by Vissing-Jorgensen (2002) regarding the frequency

with which US households trade assets held in their brokerage accounts.

We conduct two quantitative exercises with our model. In the first, we feed into

the model the paths for the stock of M2 and for aggregate consumption observed in the

U.S. economy in monthly data over the past 40 years and examine the model’s predictions

for velocity and the price level in the long and the short-run. In terms of its long-run

implications, the model is similar to the data in that velocity is relatively stable and the

price level increases in line with the growth of M2 relative to consumption. In terms of its

short-run implications, the model produces fluctuations in velocity that have a surprisingly

high correlation with the fluctuations in velocity observed in the data. This result stands

in sharp contrast to the implications of a standard cash-in-advance model (this model with

N = 1). In such a model, aggregate velocity is constant regardless of the pattern of money

growth. We also find that the short run fluctuations in velocity in our model are not as

large as those in the data. From the finding that the short run fluctuations in velocity in our

model are highly correlated with those observed in the data, we conclude that a substantial

portion of the unconditional negative correlation of the ratio of money to consumption and

velocity might reasonably be attributed to the response of velocity to exogenous movements

in money. From the finding that the short run fluctuations in velocity in our model are not
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as large as those in the data, however, we conclude that there may be other shocks to the

demand for money which we have not modelled here. If this were the case, one would not

expect this model to account for all of the variability of velocity observed in the data.

With this possibility in mind, in our second exercise, we consider the response of

money, prices, and velocity in our model to an exogenous shock to monetary policy, modelled

here as an exogenous, persistent shock to the short-term nominal interest rate similar to that

estimated in the vector autoregression (VAR) literature as the response of the Federal Funds

rate to a shock to monetary policy. Here we find that the corresponding paths for money

and the price level are quite similar to the estimated responses of these variables in this VAR

literature. With the increase in interest rates, the money stock initially declines for some time

and the price level shows little or no response for a year or more. In this exercise, aggregate

output is held constant by assumption and, hence, the sluggish response of the price level to

this monetary policy shock is entirely due to the dynamics of money demand. We interpret

this finding as a call for further work to identify the extent to which the sluggish response of

prices to monetary policy shocks found in the VAR literature is a result of the dynamics of

money demand or more conventional sources of price stickiness.

Grossman and Weiss (1983) and Rotemberg (1984) were the first to point out that

open market operations could have effects on real interest rates and a delayed impact on the

price level in inventory-theoretic models of money demand. The models that they present

are similar to this model when the parameter N = 2. Those authors examine the impact

of a surprise money injection on interest rates and prices in the context of otherwise deter-

ministic models. Alvarez and Atkeson (1997) study the effects of open market operations on

real interest rates and real exchange rates in a fully stochastic inventory-theoretic model of

money demand. In that model, it is assumed that households have logarithmic utility and

a constant probability of being able to transfer money between the asset market and the

goods market. As a result of these assumptions, the individual velocity of money is constant

across households and hence the aggregate velocity of money is constant both in the long

and the short run. In the inventory-theoretic model of money demand that we present here,

open market operations have effects on the real interest rate that are qualitatively similar to

those in Alvarez and Atkeson (1997). We focus here on the implications of this model for the
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response of velocity and prices to money injections.

2. An inventory-theoretic model of money demand
Consider a cash-in-advance economy in which the asset market and the goods market

are in physically separate locations. Time is discrete and denoted t = 0, 1, 2, . . . . Agents in

this economy are organized into households each comprised of a worker and a shopper. There

are measure one households. We assume that each household has access to two financial

intermediaries: one that manages its portfolio of assets and another that manages its money

held in a transactions account in the goods market. We refer to the household’s account with

the financial intermediary in the asset market as its brokerage account and its account with

the financial intermediary in the goods market as its bank account. There is a government that

injects money into the asset market in this economy via open market operations. Households

that participate in the open market operation purchase this money with assets held in their

brokerage accounts. These households must transfer this money to their bank account before

they can spend it on consumption.

The exogenous shocks in this economy are shocks to the money growth rate µt and

shocks to the endowment of each household yt. Since all households receive the same endow-

ment, yt is also the aggregate endowment of goods in the economy. Let ht = (µt, yt) denote the

realized shocks in the current period. The history of shocks is denoted ht = (h0, h1, . . . , ht) .

From the perspective of time zero, the probability distribution over histories ht has density

ft(h
t).

As in a standard cash-in-advance model, each period is divided into two sub-periods.

In the first sub-period, each household trades assets held in its brokerage account in the asset

market. In the second sub-period, the shopper in each household purchases consumption

in the goods market using money held in the household’s bank account, while the worker

sells the household’s endowment in the goods market for money Pt(ht)yt(ht) where Pt(ht)

denotes the price level in the current period. In the next period, a fraction γ ∈ [0, 1] of the
worker’s earnings is deposited in the household’s bank account in the goods market while

the remaining 1− γ of these earnings are deposited in the household’s brokerage account in

the asset market. We interpret γ as the fraction of total income that agents receive regularly

7



deposited into their transactions accounts or as currency and we refer to γ as the paycheck

parameter and to γPt−1(ht−1)yt−1(ht−1) as the household’s paycheck. We interpret (1− γ) as

the fraction of total income that agents receive in the form of interest and dividends paid on

assets held in their brokerage accounts.

Unlike a standard cash-in-advance model, we do not assume that households have the

opportunity to transfer money between the asset market and the goods market every period.

Instead, we assume that each household has the opportunity to transfer money between its

brokerage account and its bank account only once every N periods. In other periods, a

household can trade assets in it brokerage account and use money in its bank account to

purchase goods, it simply cannot move money between these two accounts. We refer to those

households that currently have the opportunity to transfer money between their brokerage

and bank accounts as active households and those households that are currently unable to

transfer money between these accounts as inactive households.

We assume that each period a fraction 1/N of the households are active. Each period,

we index each household by the number time periods since it was last active, here denoted

by s = 0, 1, ..., N − 1. A household of type s < N − 1 in the current period will be type s+1
in the next period. A household of type s = N − 1 in the current period will be type s = 0
in the next period. Hence a household of type s = 0 is active in this period, a household of

type s = 1 was active last period, and a household s = N − 1 will be active next period.
In period 0, each household has an initial type s0, with fraction 1/N of the households

of each type s0 = 0, 1, ..., N − 1. Let S(t, s0) denote the type in period t of a household
that was initially of type s0. For all s0, S(0, s0) = s0. For all periods t and s0 such that

S(t, s0) = 0, 1, ..., N − 2, in period t + 1, S(t + 1, s0) = S(t, s0) + 1. For the s0 such that

S(t, s0) = N − 1 in period t, S(t+ 1, s0) = 0.
The households of type s > 0 are inactive in the current period. For an inactive

household of type s, the quantity of money that it has on hand in its bank account at the

beginning of goods market trading in the current period is denoted Mt(s). The shopper in

this household spends some of this money on goods, Ptct(s), and the household carries the

unspent balance in its bank account into next period, Zt(s) ≥ 0. The balance that this

household has at the beginning of the period is equal to the quantity of money that it held
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over in its bank account last period Zt−1(s − 1) plus its paycheck γPt−1yt−1. Thus, the the

evolution of money holdings and consumption for these households is given by:

Mt(s, h
t) = Zt−1(s− 1, ht−1) + γPt−1(ht−1)yt−1(ht−1), (1)

Mt(s, h
t) ≥ Pt(ht)ct(s, ht) + Zt(s, ht) (2)

When a household is active, and hence of type s = 0, it chooses a transfer of money

Ptxt from its brokerage account in the asset market into its bank account in the goods market.

Hence, the money holdings and consumption of active households satisfy:

Mt(0, h
t) = Zt−1(N − 1, ht−1) + γPt−1(ht−1)yt−1(ht−1) + Pt(ht)xt(ht), (3)

Mt(0, h
t) ≥ Pt(ht)ct(0, ht) + Zt(0, ht). (4)

In addition to the constraints on the household’s bank account, equations (1)-(4)

above, the household also faces a sequence of constraints on its brokerage account. We

assume that in each period t, the household can trade in a complete set of one-period state

contingent bonds, each of which pays one dollar into the household’s brokerage account next

period if the relevant contingency is realized. Let Bt−1(s − 1, ht) denote the stock of bonds
held by inactive households of type s ≥ 1 at the beginning of period t following history ht
and Bt(s, ht, h

0
) denote the stock of bonds purchased by that household that will pay off next

period if history ht+1 = (ht, h
0
) is realized next period. Let At(s, ht) ≥ 0 denote money held

by the household in its brokerage account at the end of period t. Since an inactive household

cannot transfer money between its brokerage account and its bank account, this household’s

bond and money holdings in its brokerage account must satisfy:

Bt−1(s− 1, ht) +At−1(s− 1, ht−1) + (1− γ)Pt−1(ht−1)yt−1(ht−1)− Pt(ht)τt(ht) (5)

≥
Z
qt(h

t, h0)Bt(s, ht, h0)dh
0
+At(s, h

t)

where qt(ht, h0) is the price in period t given history ht of a bond that will pay one dollar in

period t+ 1 if shock h0 is realized and Pt(ht)τt(ht) are nominal lump-sum taxes. We assume
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that each household’s real bondholdings must remain within arbitrarily large bounds. The

analogous constraint for active households is

Bt−1(N − 1, ht) +At−1(N − 1, ht−1) + (1− γ)Pt−1(ht−1)yt−1(ht−1)− Pt(ht)τt(ht) (6)

≥
Z
qt(h

t, h0)Bt(0, ht, h0)dh0 + Pt(ht)xt(ht) +At(0, ht),

where Pt(ht)xt(ht) is the transfer of money from brokerage to bank account chosen by the

active households.

In the constraints (5) and (6) we have allowed each household the option of holding

(noninterest bearing) money At(s, ht) ≥ 0 in their brokerage account in the asset market from
period t to period t+ 1. Clearly, if nominal interest rates are always positive in equilibrium,

no household would ever wish to do so since interest bearing bonds would dominate money

in such equilibria. The nominal interest rate it(ht) is related to asset prices by:

1

1 + it(ht)
=

Z
qt(h

t, h0)dh0. (7)

At the beginning of period 0, all households of type s0 ≥ 1 begin with balances M̄0(s0)

in their bank accounts in the goods market. This quantity is the balance on the left side of

(2) in period 0. For active households in period 0, the initial balance M̄0(0) in (4) is composed

of an initial given balance Z̄0 and a transfer P0x0 of their choosing. Each household of type

s0 also begins period 0 with initial balance B̄0(s0) in its brokerage account on the left side

of constraints (5) and (6). The households initially have no money corresponding to A−1 in

their brokerage accounts.

Let Bt(ht) be the total stock of government bonds in period t following history ht. The

government faces a sequence of budget constraints

Bt−1(ht) =Mt(h
t)−Mt−1(ht−1) + Pt(ht)τt(ht) +

Z
qt(h

t, h0)Bt(ht, h0)dh0

together with arbitrarily large bounds on the government’s real bond issuance. We denote
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the government’s policy for money injections as µt(ht) =Mt(h
t)/Mt−1(ht−1). In period 0, the

initial stock of government debt is B̄0 and M0 −M−1 is the initial monetary injection. This

budget constraint implies that the government pays off its initial debt with a combination of

lump-sum taxes and money injections achieved through open market operations.

For each date and state and taking as given the prices and aggregate variables, each

household of type s0 chooses transfers xt(ht), cash and a bond portfolio to hold over in the

asset market, At(S(t, s0), ht) and Bt(S(t, s0), ht, h0), consumption , ct(S(t, s0), ht), and money

holdings, Mt(S(t, s0), h
t) and Zt(S(t, s0), ht), to maximize expected utility:

∞X
t=0

βt
Z
u[ct(S(t, s0), h

t)]ft(h
t)dht

subject to the constraints (1), (2), and (5) in those periods t in which S(t, s0) > 0, and

constraints (3), (2), and (6) in those periods t in which S(t, s0) = 0.

An equilibrium of this economy is a collection of prices {qt(ht, h0), Pt(ht)}∞t=0 , decision
rules {ct(s, ht), xt(ht), At(s, ht), Bt(s, ht, h0),Mt(s, h

t), Zt(s, h
t)}∞t=0 , and a government policy

{τt(ht), µt(ht), Bt(ht)}∞t=0 , such that the decision rules solve each household’s problem when

prices are taken as given and the goods market, the money market, and the bond market all

clear for all t, ht :

1

N

N−1X
s=0

ct(s, h
t) = yt(h

t),

1

N

N−1X
s=0

£
Mt(s, h

t) +At(s, h
t)
¤
=Mt(h

t), and

1

N

N−1X
s=0

Bt−1(s, ht) = Bt−1(ht).

To understand the determination of equilibrium asset prices, it is useful to examine

the first order conditions of the household’s problem. To do so, use (1) and (3) to substitute

out for money holdings Mt(s, h
t) in constraints (2) and (4). Let ηt(S(t, s0), ht) ≥ 0 denote

the Lagrange multipliers on the constraints (2) and (4) of household s = S(t, s0) at (t, ht),

and let λt(S(t, s0), ht) ≥ 0 denote the Lagrange multipliers for the constraints (5) and (6).
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Let δMt (S(t, s0), h
t) ≥ 0 denote the multipliers on the non-negativity constraints for money

held in the bank, Zt(S(s0, t), ht), and let δAt (S(t, s0), h
t) ≥ 0 denote the multipliers on the

non-negativity constraints for money held in the brokerage account, At(S(t, s0), ht). The first

order necessary conditions for the coalition’s optimization problem include:

xt(h
t) : ηt(0, h

t) = λt(0, h
t) (8)

ct(s, h
t) : βtu0[ct(s, ht)]ft(ht) = Pt(ht)ηt(s, ht) (9)

Bt(s, h
t, h0) : λt(s, h

t)qt(h
t, h0) = λt(s+ 1, h

t, h0) (10)

Zt(s, h
t) : δMt (s, h

t) +

Z
ηt+1(s+ 1, h

t, h0)dh0 = ηt(s, h
t) (11)

At(s, h
t) : δAt (s, h

t) +

Z
λt+1(s+ 1, h

t, h0)dh0 = λt(s+ 1, h
t) (12)

From (10), we have that the evolution over time of the marginal value of a dollar in a

household’s brokerage account (given by λt(s, ht)) is the same for all households and is deter-

mined by bond prices qt(ht, h0). It is useful to define Qt(ht) ≡ q0(h0, h1)q(h1, h2) . . . q(ht−1, ht)
as the price in period 0 of one dollar delivered in the asset market in period t following history

ht. From (10), we have that for all households

Qt(h
t) =

λt(S(t, s0), h
t)

λ0(s0, h0)
.

From (8) and (9), we thus find that asset prices in period t are determined by the marginal

utility of a dollar for the active households (of type s0 such that S(t, s0) = 0):

Qt(h
t) =

1

λ0(s0)
βt
u0[ct(0, ht)]
Pt(ht)

ft(h
t). (13)

State contingent bond prices are thus given by

qt(h
t, h0) =

λ0(s0)

λ0(s0 + 1)
β
u0[ct+1(0, ht, h0)]
u0[ct(0, ht)]

Pt(h
t)

Pt+1(ht, h0)
ft+1(h

t, h0)
ft(ht)

. (14)

In what follows, we will examine equilibria in which the initial endowments of bonds B̄0(s0)

are such that λ0(s0) is equal across all households. In such equilibria, the initial Lagrange
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multipliers λ0(s0) drop out of all asset pricing formulas.

To this point, we have made explicit reference to uncertainty in the notation so as

to give a clear characterization of state contingent asset prices. Having done this, we will

suppress reference to histories ht for the remainder of the paper to conserve on notation.

From (11), we obtain that for all inactive shoppers who hold money, Zt(s) > 0, we

have the familiar stochastic Euler equation for an agent who can save only with money:

1 = Et

½
β
u0[ct+1(s+ 1)]
u0[ct(s)]

Pt
Pt+1

¾
(15)

together with our pricing formula for bonds (14), which can be written as

1

1 + it
= Et

½
β
u0[ct+1(0)]
u0[ct(0)]

Pt
Pt+1

¾
.

The asset pricing implications of our model are closely related to those obtained by

Grossman and Weiss (1983), Rotemberg (1984), and Alvarez and Atkeson (1997). In particu-

lar, our model has predictions for the effects of money injections on real interest rates and real

exchange rates arising from the segmentation of the asset market related to the predictions

in those papers and those in Alvarez, Atkeson, and Kehoe (2002) and Alvarez, Lucas, and

Weber (2002). We do not develop these implications here.

In what follows, we focus on equilibria in which two conditions are satisfied. The first

condition is that the nominal interest rate it is positive in all periods t. This condition implies

that households will hold not money in their brokerage accounts (At(s) = 0 for all t) since,

in this case, interest bearing bonds always dominate money in the asset market. The second

condition is that, for all periods t,

1 > Et

½
β
u0[ct+1(0)]
u0[ct(N − 1)]

Pt
Pt+1

¾
. (16)

Since a shopper of type s = N − 1 at date t become a shopper of types s = 0 at date

t+ 1, from the first order conditions above, such a shopper will not hold money in the bank

(Zt(N − 1) = 0) if this condition is satisfied.3 In the remainder of the paper, we solve the
3More generally, however, there may exist situations where shoppers of type s < N − 1 cease to hold
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model under the assumption that At(s) = 0 and Zt(N − 1) = 0 in all periods t. After solving
the model under these assumptions, one can use (14) and (7) to check that the implied interest

rates are positive and check that (16) is satisfied.

3. How the model works
In this section, we first discuss the typical pattern of households’ money holdings in

this inventory-theoretic model of money demand. We then observe that one can analytically

solve for the dynamic, stochastic equilibrium of our model in the case in which agents have

utility u(c) = log(c) and the paycheck parameter is γ = 0.We use this special case to develop

intuition for the dynamic relationship between money, velocity, and prices implied by the

model in the long and the short run. In subsequent sections we approximate the solution to

other parameterizations of the model numerically to study the quantitative implications of

the model.

In our model, agents periodically withdraw money from the asset market and they

spend that money only slowly in the goods market to ensure that it lasts until they have

another opportunity to withdraw money from the asset market. As a result, households’

equilibrium paths for money holdings have the familiar saw-toothed shape that is character-

istic of inventory-theoretic models of money demand – declining steadily over time before

jumping up once again when the next transfer of money from the asset market is in hand. In

Figure 4, we illustrate this saw-tooth pattern in the steady-state path of real balances for an

individual household.

This saw-toothed pattern of households’ money holdings plays a key role in shaping

our model’s implications for the dynamics of money, velocity, and prices. This role can be

seen most clearly in a specification of our model in which agents have utility u(c) = log(c)

and the paycheck parameter γ = 0. In this specification of the model, households of type s

spend a constant fraction v(s) of their current money holdings and carry over the remaining

money in the bank from one period to another. The paycheck that shoppers receive makes it possible for
them to consume even if they are not storing money; this may be optimal behavior if the return on money is
sufficiently low.
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fraction (1− v(s)) into the next period.4 Hence, each period

Zt(s) = (1− v(s))Mt(s) and (17)

Ptct(s) = v(s)Mt(s),

with

v(s) ≡ 1− β

1− βN−s
. (18)

We refer to the fraction v(s) as the individual velocity of money for a household of type

s. These individual velocities can be interpreted as average propensities to consume out

of money holdings. Observe that these individual velocities v(s) converge to 1/(N − s)
as β approaches one and thus, in this limit, approach the individual velocities obtained if

one simply assumed directly that households maintain constant nominal expenditure while

inactive. As β/µ approaches one (where µ is the steady-state rate of money growth), the

households’ saw-toothed pattern of money holdings in steady-state is easy to compute – the

money holdings in period t+ s of a household that was active in period t are given by

Mt+s(s) =Mt(0)
N − s
N

.

Given that the individual velocities of money for households of types s are constant

over time in this specification of our model, aggregate velocity at any point in time is simply

a function of the distribution of money holdings across these households with different indi-

vidual velocities of money. To see this, recall that if the nominal interest rate is positive, so

that households do not hold any money in the asset market (At(s) = 0), then money market

4The intuition that we present in this section is incomplete if we consider alternative parameterizations
of utility or choose the paycheck parameter γ > 0. In these alternative parameterizations of the model, the
individual velocities v(s) are not constant over time but depend instead on expectations of future money
growth and output.
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clearing implies that

Mt =
1

N

N−1X
s=0

Mt(s).

Accordingly, we interpret {Mt(s)/Mt}N−1s=0 as the distribution of money holdings across house-

holds. Goods market clearing then implies that the aggregate velocity of money is determined

by a weighted average of the individual velocities of money where the weights are given by

the distribution of money holdings:

vt ≡ Ptyt
Mt

=
1

N

N−1X
s=0

Ptct(s)

Mt
=
1

N

N−1X
s=0

v(s)

µ
Mt(s)

Mt

¶
. (19)

Of course, in a steady-state, the distribution of money holdings across households of different

types is constant over time, and hence, aggregate velocity is also constant. With constant

aggregate velocity, the steady-state inflation rate is equal to the money growth rate. Hence,

our model predicts that, in the long-run, the price level and the money supply grow together

while the aggregate velocity of money stays roughly constant.

Out of steady-state, however, as shown in (19), the implications of this simple version of

our model for the dynamics of prices, velocity, and money are determined by two factors: first,

the differences in individual velocities v(s) across households of different types s, and second,

the effect of a money injection on the distribution of money holdings across households. These

factors can be understood intuitively as follows.

First, consider the differences in individual velocities across households. These mea-

sures of individual velocity equal the flow of consumption obtained by that household relative

to its money holdings at the beginning of the period. From Figure 4, we can immediately

see that these individual velocities should increase with s since a household of type s close

to zero holds a large stock of money relative to his consumption while a household of type s

close to N −1 holds only a small stock of money relative to his consumption. In Figure 5, we
illustrate the pattern of these individual velocities for households of type s as given in (18).

How does a one-time increase in the supply of money affect aggregate velocity in this

economy? To answer this question, we solve for the evolution of the distribution of money
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holdings as a function of the money growth rate. From (17), the evolution of the distribution

of money holdings for households of type s = 1, . . . , N − 1 is given by:

Mt(s)

Mt
= (1− v(s− 1))Mt−1(s− 1)

Mt−1

1

µt
. (20)

Since the distribution of money holdings must sum to one, the money holdings of active

households are then given by:

1

N

Mt(0)

Mt
= 1− 1

N

N−1X
s=1

(1− v(s− 1))Mt−1(s− 1)
Mt−1

1

µt
. (21)

These formulas show that an increase in the money growth rate µt shifts the distribution of

money holdings towards the active households at the expense of the inactive households.5

Now we can see the effect of money growth on velocity. By redistributing money

towards the active household, an increase in the supply of money tilts the distribution of

money holdings towards agents with low individual velocities and away from agents with

high individual velocities, lowering aggregate velocity. To derive this result analytically, from

(19), (20), and (21) observe that

∂ (vtµt)

∂µt
= v(0).

Hence the elasticity of velocity with respect to money growth is given by

∂vt
∂µt

µt
vt
=

·
∂(vtµt)

∂µt
− vt

¸
1

vt
=

·
v(0)

vt
− 1
¸
.

5To check that these equations do, in fact, characterize the equilibrium allocations of money and consump-
tion, one needs to check that the implied nominal interest rates are always positive and that shoppers of type
N − 1 do not hold money at the end of the period. Since Ptct(0) = v(0)Mt(0) and Ptct(N − 1) =Mt(N − 1)
in our conjectured equilibrium allocation, one need only check that

Et

½
β

µt+1

Mt(0)/Mt

Mt+1(0)/Mt

¾
< 1

and

Mt(N − 1)
Mt

≤ v(0)Mt(0)

Mt

at all dates and in all states of nature given the assumed stochastic process for µt.
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Since the individual velocity of active households is less than aggregate velocity (v(0) < vt),

aggregate velocity declines when the supply of money increases. Given the exchange equation

Mtvt = Ptyt, we see that the price level does not respond on impact one-for-one with an

increase in the money supply since that increase in the money supply leads to an endogenous

decrease in aggregate velocity.

To see how this elasticity of velocity with respect to money growth depends on N,

consider the equilibrium of this model as the steady state value of β/µ→ 1. In this limiting

case, the nominal expenditure of each household is constant over time as is typically assumed

in an inventory-theoretic model of money. In this limit, v(0) = 1/N and velocity in steady-

state is given by 2/(N + 1) so that, under these assumptions

∂vt
∂µt

µt
vt
= −1

2

N − 1
N

and
∂πt
∂µt

µt
πt
=
1

2

N + 1

N
,

where these derivatives are evaluated at the steady-state. We can see here that if N = 1,

as in the standard cash-in-advance model, inflation responds one-for-one with the shock to

money growth and velocity is constant. In contrast, for large N, prices respond only about

1/2 as much as money. This result follows from the geometry of money holdings implied by

an inventory-theoretic model – a household that has just replenished its bank account will

hold roughly twice as much money as an average household and hence have roughly half the

velocity of the average household.

Following this effect on impact of money growth on velocity, the dynamics of velocity

and prices that follow are determined by the subsequent evolution of the distribution of money

holdings over time. It is easier to analyze the dynamics of velocity following a shock to money

growth in a log-linearized version of the simple model. The log-linearized model has three

sets of equations governing the evolution of velocity. First, there is an equation requiring

that the sum of the log deviations of the fractions of money held by agents of type s is zero:

0 = m̄(0)m̂t(0) +
N−1X
s=1

m̄(s)m̂t(s)

where m̄(s) ≡ M(s)/M in the steady-state and m̂t(s) ≡ log (Mt(s)/Mt)− log m̄(s). Second,
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there is a set of equations for s = 1, . . . , N − 1 governing the evolution of m̂t(s)

m̂t(s) = m̂t−1(s− 1)− µ̂t,

where these equations follow from the fact that individual velocities are constant. Third,

there is the formula for velocity:

v̄v̂t = v(0)m̄(0)m̂t(0) +
N−1X
s=1

v(s)m̄(s)m̂t(s).

These equations imply that the deviations of aggregate velocity from its steady-state value

follow an ARMA(N,N) process of the form:

v̂t =
N−1X
s=0

v(s)
m̄(s)

m̄(0)
v̂t−s−1 +

1

v̄

N−1X
s=0

Ã
v(s)

m̄(s)

m̄(0)
−
N−1X
k=s

v(k)m̄(k)

!
µ̂t−s.

To get a sense of the coefficients of this process, observe that, with log utility and γ = 0, as

β/µ gets close to one, we have:

v(s)
m̄(s)

m̄(0)
= v(0) =

1

N
.

Hence:

v̂t =
1

N

NX
s=1

v̂t−s +
N−1X
s=0

µ
−1
2
+
s

N

¶
µ̂t−s.

Consider the response of the log of velocity to a one-time shock to money growth µ̂t and

µ̂s = 0 for all s 6= t. Using the approximation here, the impulse response of the log of velocity
over the first N − 1 periods is given by

v̂t+k =
1

2

µ
1 +

1

N

¶k+1
− 1. (22)

This impulse response starts with v̂t = −1/2, for largeN it crosses zero at roughly k = N log 2,
and then rises above zero until k = N.
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To illustrate these dynamics, in Figure 6, we show the responses of log(Mt), log(Pt) and

log(vt) to a one time unit shock to money growth when agents have log utility and γ = 0. As

shown in Figure 6, at time t = 0, the money supply blips up by one unit and stays at its new

level thereafter. In response to this injection, aggregate velocity falls, is negatively correlated

with the money supply, and the price level responds less than one-for-one with the change

in the money supply. Over time, aggregate velocity and prices rise, even overshooting their

steady-state levels, and then gradually converge to steady-state with dampened oscillations.

The dynamics derived above and illustrated in Figure 6 can be understood as follows.

Since the money growth rate is high for only one period, from (20) we see that the households

who were active at the time of the money injection carry an abnormally large stock of money

until they next have the opportunity to transfer funds from their brokerage account. As

shown in Figure 5, their individual velocities rise each period until this next visit occurs.

Thus, aggregate velocity remains below its steady-state level for a time initially as these

agents have a low individual velocity and then rises past its steady-state level as the individual

velocity for these agents rises. After N periods these agents have spent all of their money

and they visit the asset market again. The periodic structure of the model (the pattern of

shopping trips) introduces a sequence of dampened oscillations in velocity as the changes in

the distribution of money holdings work their way through the system. After the first N

periods, however, these effects of a money growth shock on velocity are quite small.

We have presented the solution of the model in this simple case to develop intuition

for the qualitative effects of money injections on velocity and prices. Our key finding is that,

in response to an increase in the money supply, aggregate velocity falls and thus the price

level responds less than one-for-one with the money supply. Hence, prices in this model are

sticky in the sense that they move substantially less than would be predicted by the simplest

quantity theory. Specifically, the response of prices, on impact, is roughly half as large as

the change in the supply of money with large N. Moreover, there is some persistence in

this sluggish response of prices to changes in the quantity of money, and the extent of this

persistence depends on the parameterN. A persistently sluggish response of prices to a change

in money arises naturally from the dynamics of money holdings in this inventory-theoretic

model of money demand.
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In the next section, we study approximations to the solution of alternative specifi-

cations of our model by log-linearizing the equations of the model around the determinis-

tic steady-state. We solve the resultant system of stochastic difference equations using the

method of undetermined coefficients as described in Uhlig (1999).

4. Velocity and sluggish prices
We have shown how, qualitatively, the velocity of money declines in response to an

increase in the supply of money and, as a result, prices respond sluggishly to an increase in

the supply of money in our inventory theoretic model of money demand. The quantitative

predictions of our model both for the velocity of money in the steady-state and for the short-

run response of velocity to a money injection are determined by the parameters N and γ.

In this section, we explore these quantitative implications. We first choose the parameters

N and γ so that our model reproduces the average level of velocity for a broad monetary

aggregate held by U.S. households. We then conduct two exercises with the model to illustrate

its quantitative implications for the short-run dynamics of money, velocity, and prices with

these parameter values.

In the first exercise, we feed into the model the sequences of money growth and ag-

gregate consumption shocks observed in the data and compare the model’s implications for

the short-run fluctuations in velocity with those observed in the data. We find that velocity

in the model is highly correlated with velocity in the data, but its fluctuations in the model

are much smaller in magnitude than those observed in the data.

In our second exercise, we examine the responses of money, prices, and velocity in the

model to a monetary shock that results in a persistent movement in the nominal interest

rate similar to those estimated as the response of the Federal Funds rate to a monetary

policy shock in the VAR literature. Here we find that the corresponding impulse responses of

money and prices implied by our model are similar to those estimated in the VAR literature.

In particular, prices in the model respond quite sluggishly to the change in monetary policy.

A. Steady-state velocity

The steady-state velocity implied by our model is a simple function of the parameters

N and γ. In the example with u(c) = log(c) and γ = 0 that we used for intuition in the
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previous sections, we had individual velocities given by (18) which, for β close to 1, gives v(s)

close to 1/(N − s). With this approximation, in steady-state, aggregate velocity is given by:

v̄ =
2

N + 1
.

Therefore, if we set the period length equal to one month and then seek to choose N so that

the model produces aggregate annualized velocity equal to 2, we need to choose N to solve

2 = 24/(N+1) or N = 11 months. Obviously, to match a lower annualized figure for velocity,

say 1.5, we would need to choose a larger N, here 15.

Holding N fixed, the model’s implications for steady-state velocity are an increasing

function of the paycheck parameter γ since the automatic deposit of paychecks into house-

holds’ bank accounts allows for faster circulation of money. In this case, for β/µ close to

one, aggregate velocity is well approximated by v̄ = 2/(N + 1)(1− γ). Here, for example, to

produce annualized velocity close to 1.5 given γ = 0.6 would require N = 38.

B. Our choice of monetary aggregate

In this section, we choose the parameters of our the model to match the average

velocity of a broad money aggregate – the sum of U.S. households’ holdings of currency

plus demand, savings, and time deposits.6 In choosing this money aggregate, we consider

currency and these bank accounts in the data as corresponding to funds held in households’

bank accounts in the model, while stocks, bonds, money market and other mutual funds

in the data as corresponding to assets held in households’ brokerage accounts. We present

evidence that households in the U.S. hold a large quantity of currency, demand, savings, and

time deposits and pay a substantial cost to hold these assets in terms of foregone interest

relative to the interest available on retail money market mutual funds or short-term Treasury

securities. We match those observations in our model by assuming that households transfer

money between their brokerage accounts and bank accounts very infrequently – on the

order of only once every year to once every three years. While such an assumption may

seem implausible, the microeconomic evidence summarized in Vissing-Jorgensen (2002) on

6This aggregate is essentially U.S. households’ holdings of M2 less retail money market funds.
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the frequency with which households trade financial assets held outside of their bank accounts

so defined is consistent with these assumptions.

U.S. households hold substantial amounts of currency and low yielding bank accounts.

In Figure 7, we report on US households’ holdings of currency and demand deposits, time and

savings deposits, and retail money market mutual funds. These data are from the Flow of

Funds Accounts (2002). Figure 7 is a stacked line chart of these holdings relative to personal

consumption expenditure. The height of the lowest line indicates holdings of currency and

demand deposits relative to annualized personal consumption expenditure. The gap between

that line and the next highest line indicates holdings of time and savings deposits. The gap

between that second line and the third line indicates holdings of retail money market mutual

funds.7 These data give a measure of the velocity of money relative to personal consumption

expenditure (at least for the money held by households) averaging roughly 1.5 and rising

more recently towards 2. We use this average level of velocity of 1.5 to guide our choice of

N and γ for the quantitative results that follow.

To document that these bank accounts have low yields, in Table 1 we summarize data

on the rate of return paid on various types of bank deposits and other financial assets that

are available from the web site of the Federal Reserve Bank of St. Louis.8 In the top panel of

Table 1, we report on the average user cost of holding currency, demand deposits, time and

savings deposits, and retail money market mutual funds over the full time period for which

the data are available as well as over the decade 1990-2001. The user costs reported in this

table are equal to the difference between the rate of return on short-term Treasury securities

(as reported in the spreadsheet from which the data are taken) less the rate of return on the

asset in question. In panel b of Table 1, we show the average opportunity cost of M1, M2,

and M2 less retail money market mutual fund shares. Here these average opportunity costs

are measured as the weighted average of the opportunity cost of each type of deposit in the

corresponding aggregate where the weights are given by the share of each type of deposit in

7Note that holdings of money market mutual funds were equal to zero before the middle of the 1970’s.
8See the file of input data msinputs.zip available at http://www.stls.frb.org/research/msi/index.html. This

file contains a spreadsheet that reports the data on the user cost of various types of bank deposits that has
been collected by the Research Department at the Federal Reserve Bank of St. Louis as part of their project
to construct Divisia monetary aggregates.
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the corresponding monetary aggregate.

As is clear from Table 1, the average opportunity cost of holding time and savings

deposits is roughly similar to that of holding demand deposits, both over the period 1959-

2001 and more recently. In contrast, the opportunity cost of holding retail money market

mutual fund shares has been essentially zero on average. Likewise, the opportunity cost of

M2 less retail money market funds is on the order of 200 basis points (2 percentage points)

and is not that substantially different than the opportunity cost of M1.

To parameterize our model to reproduce an average annual velocity of money of 1.5,

we choose the length of a period to be one month and use two choices for the parameters N

and γ. In the first of these, we set N = 15 months and γ = 0.We regard this parameterization

of the model as a useful benchmark since, with log utility and these parameters, individual

velocities are constant over time and aggregate velocity changes only because of changes in

the distribution of money across agents. In our second choice of the parameters N and γ,

we choose the paycheck parameter γ = 0.6 to match the fraction of personal income that is

received as wage and salary disbursements observed in the data.9 Here we are thinking that

personal income not paid as wage and salary disbursements is paid directly into household’s

brokerage accounts rather than into their bank accounts. We then choose N = 38 so that

with γ = 0.6, the model produces an average velocity of 1.5. We regard this second parame-

terization of the model as more interesting quantitatively. The interested reader can use the

formulas for steady-state velocity presented in the previous subsection to find the parameter

N implied by alternative choices of average velocity and the paycheck parameter γ.

The values N = 15 months and N = 38 months are the values that are required to

account for the average level of low-yielding assets held by U.S. households given a range of

assumptions about the paycheck parameter γ. These parameters imply, within the model,

that households transfer funds between their brokerage accounts and bank accounts very

infrequently. This assumption is not inconsistent with the available microeconomic evidence

on the frequency with which agents trade financial assets held outside of their bank accounts.

The first set of such microeconomic data concerns the frequency with which households

9From Table 2.1 of the National Income and Product Accounts, we observe that this fraction has been
equal to 60% on average over the period from 1959-2001.
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trade equity. Such data are relevant since a household would have to trade equity to rebalance

its portfolio between funds held in its bank account and equity held in its brokerage account.

The Investment Company Institute (1999) conducted an extensive survey of households’

holdings and trading of equity in 1998. They report on the frequency with which households

traded stocks and stock mutual funds in 1998. They report that 48% of the households that

held individual stocks outside of their retirement accounts neither bought nor sold any stock

in 1998 and 63% of the households that held stock mutual funds outside of their retirement

accounts neither bought nor sold mutual funds in 1998. Since a household would have to buy

or sell some of these assets to transfer funds between these higher yielding assets held in a

brokerage account and a lower yielding bank account, these data, interpreted in light of our

model, would indicate choices of N ranging from roughly 24 (for roughly 1/2 of households

trading these risky assets at least once within the year) to roughly 36 (for roughly 1/3 of

households trading within the year).10

The second set of microeconomic data is that presented by Vissing-Jorgensen (2002).

She studies micro data on the frequency of household trading of stocks, bonds, mutual funds

and other risky assets obtained from the Consumer Expenditure Survey. In figure 6 in her

paper, she shows the fraction of households who bought or sold one of these assets over the

course of one year as a function of their financial wealth at the beginning of the year. She

finds that the fraction of agents who traded one of these assets ranges from roughly 1/3 to

1/2 of the households owning these assets at the beginning of the year. Again, given our

interpretation that households hold stocks, bonds, mutual funds and other risky assets in

their brokerage accounts, these data would lead us to choose N between 24 and 36.

Traditionally, inventory-theoretic models of money demand have been used to study

households’ holdings of a narrow measure of money. As can be seen in Figure 7, households

in the United States hold very little currency and demand deposits relative to their per-

10These data may also overstate the frequency with which households transfer funds between their equity
accounts and their transactions accounts since some of the instances of equity trading are simply a reallocation
of the equity portfolio. The Investment Company Institute reports that more than 2/3 of those households
that sold individual shares of stock in 1998 reinvested all of the proceeds, while 57% of those households
that sold stock mutual funds reinvested all of the proceeds. In the context of our model, reallocation of the
household portfolio in the asset market is costless and does not generate cash that can be used to purchase
goods.
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sonal consumption expenditure. Their holdings of these assets have been trending downward

steadily since 1952 and are now represent less than one month’s worth of personal consump-

tion expenditure. If we were to choose the parameters of our model to reproduce the observed

velocity of a narrow definition of money such as M1 or currency alone, we would choose N to

represent trading frequencies on the order of several weeks. This specification would require a

period close to one day and N on the order of 15 and γ in the range of 1/2. The variations in

velocity that would occur in such a model would be at too high a frequency to be of interest

relative to the data.

C. The response of velocity to U.S. money and output shocks

We now study the implications of our model for velocity in the short run when we

feed in the money growth and endowment shocks observed in the U.S. data. We use monthly

data on M2 as our measure of the monetary aggregate Mt, and we use monthly data on the

deviation of the log of personal consumption expenditure from a linear trend as our measure of

the shocks to the aggregate consumptio yt. To solve for households’ decision rules in the model,

we estimate a VAR relating the current money growth rate and aggregate consumption to 12

lags of these variables and use this VAR as the stochastic process governing the exogenous

shocks. We then generate the model’s implications for velocity by feeding in the actual series

for these shocks. To compare the implications of our model for the dynamics of money and

velocity in the short-run to the data, we detrend the series implied by the model using the

HP-filter.

Consider first the implications of our model with N = 15 months and γ = 0. In

Figure 8, we show the HP-filtered series for velocity implied by our model together with the

corresponding HP-filtered series for velocity from the data. The correlation between velocity

in the model and the data is 0.4. In the figure, we have used different scales in plotting the

series from the model and the data. These different scales reflect the fact that the standard

deviation of velocity in the data is 3.6 times larger than the standard deviation of velocity in

the model. The results are essentially identical when we compare the 12 month differences

of the series from the model and the data: the correlation between the two again is 0.4 and

the standard deviation of changes in the velocity in the data is again 3.6 times larger than
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the standard deviation of changes in velocity in the model.

In Figure 9, we make the same comparison between HP filtered velocity from the

model and the data in the case in which N = 38 and γ = 0.6. Here, the correlation between

the two series is higher at 0.6 and the standard deviation of velocity in the data is now only

2.6 times larger than that in the model. Again, the results for 12 month differenced data are

similar, with a correlation of 0.5 and a relative standard deviation of 2.7.

Given that we have used nothing but steady-state information to choose the parameters

of this model, we regard the high correlation between velocity from the model and the data

as a remarkable success. Observe that if we had chosen N = 1, as in a standard cash-in-

advance model, velocity as implied by the model would be constant at one regardless of the

shock process and, hence, the correlation between velocity in the model and velocity in the

data would be zero. We interpret this finding as offering support for the hypothesis that a

substantial portion of the negative correlation between the short run movements of velocity

and the ratio of money to consumption is due to the endogenous response of velocity to

changes in the ratio of money to consumption.

While a promising first start, however, these specifications of the model clearly do

not account for all of the variability of velocity observed in the data. Under both sets of

parameter values, the short run variability of velocity in the data is substantially larger than

that in the model. One possible explanation for this discrepancy between the model and

the data may be that there are other shocks to the demand for money which we have not

modelled here. If this were the case, one would not expect this model to account for all of

the variability of velocity observed in the data. With this possibility in mind, in the next

section we consider the response of money, prices, and velocity in our model to an exogenous

shock to monetary policy, modelled here as an exogenous, persistent shock to the short-term

nominal interest rate.

D. The response to a shock to monetary policy

There is a large literature that seeks to estimate the response of the macroeconomy

to a monetary policy shock (see Christiano, Eichenbaum, and Evans (1999) for a survey of

this literature). There appears to be a consensus in this literature that a shock to monetary
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policy, modelled as an exogenous, persistent increase in the short-term nominal interest rate,

is associated with a persistent decrease in the supply of money and, at least initially, little

or no response of the aggregate price level. (See Cochrane (1994) and Uhlig (2001) for

additional examples of such estimates). As is evident from the exchange equation Mv = Pc,

if the response of the economy to an exogenous shock to monetary policy is followed by

a substantial movement in the quantity of money that is not matched by a corresponding

movement in the price level, then that exogenous shock to monetary policy must also be

followed by some combination of responses of consumption and the velocity of money. In

this section, we examine the response of the velocity of money in our model to an exogenous,

persistent increase in the short-term nominal interest rate to assess the extent to which the

responses of money and prices following a monetary policy shock might be accounted for by

the endogenous response of velocity to that shock.

To simulate the effects of a shock to monetary policy in our model, we solve for a

path of money growth that is consistent with a predetermined, persistent movement in the

short-term nominal interest rate. Before doing so, we first discuss two technical issues that

arise when one solves our model under the assumption that the path for nominal interest

rates is predetermined. We then show the impulse responses of money, prices, and velocity

to an exogenous, persistent increase in the nominal interest rate.

The first technical issue has to do with the dynamics of equilibria in which the nominal

interest rate follows an exogenously specified path. Under the assumption that the nominal

interest rate follows a pre-specified path, one can show analytically that the matrix that

describes the dynamics of the endogenous variables in this economy has eigenvalues that are

all equal to zero. (This implies that, if the interest rate is set at its steady-state value but

the initial distribution of money holdings is not, then the economy will reach steady-state in

exactly N periods). Because these eigenvalues are repeated, this matrix is not diagonalizable,

and hence, this variant of the model cannot be solved using standard methods such as those

outlined by Blanchard and Kahn (1980) or Uhlig (1999). In a technical appendix to this paper,

we develop a specific solution method for this model based on the use of the generalized Schur

form that makes use of the information that the eigenvalues of the matrix that describes the
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equilibrium dynamics are all equal to zero.11

The second technical issue has to do with the invertibility of the equilibrium mapping

between interest rates and money growth rates. In this model, there are many stochastic

processes for money all consistent with the same exogenously specified path for nominal

interest rates in equilibrium. In the experiments with the second variant of the model that

we carry out below, we choose one of the many stochastic process for the gross growth rate of

the money supply that result in an equilibrium in which the short-term nominal interest rate

follows our prespecified stochastic process. The process for money growth that we choose is

the unique one that has the property that a shock to the nominal interest rate, on impact,

is associated with no movement in the current price level. This choice is consistent with the

schemes used to identify shocks to monetary policy discussed in Christiano, Eichenbaum, and

Evans (1999). We discuss these two issues in greater detail in the technical appendix to this

paper.12

We now study the quantitative implications of our model having solved for a money

growth process that results in equilibrium in which the log of the short-term gross interest

rate follows a first-order autoregressive process with first order autocorrelation ρ = 0.87. This

autocorrelation is produces a response of the nominal interest rate to a shock similar to that

shown in Christiano, Eichenbaum, and Evans (1999) and Uhlig (2001). We focus on the

parameterization of our model with N = 38 and γ = 0.6.

Figure 10 shows the impulse responses of the log of the money stock, velocity, and

the aggregate price level in response to a shock to the short-term interest rate (also shown

in the figure) for the specification of the model with N = 38 months and γ = 0.6. That this

specification of the model generates large short-term movements in velocity that are strongly

negatively correlated with the ratio of money to consumption can be seen clearly in these

impulse responses. As a result of these negative comovements of money and velocity, the

aggregate price level appears “sticky” in that it shows little or no response to the shock to

11We also found that direct methods based on use of the generalized Schur form, as suggested by Klein
(2000) and others, did not correctly identify that the matrix describing the equilibrium dynamics of the
variables had eigenvalues all equal to zero. This appears to be a numerical issue since this methodology
should in theory work in cases with repeated eigenvalues.
12This appendix is available at www.atkeson.net\andy
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interest rates for at least the first twelve months. It is only after 12 months have passed

that the money stock and the price level begin to rise together in the manner that would

be expected in a flexible price model following a persistent increase in the nominal interest

rate. Recall that here, by assumption, there are no movements in aggregate output and

consumption following this shock to the nominal interest rate.

Figure 11 shows the same impulse responses except that in this case the log of the

growth rates of the money stock, velocity, and price level rather then the level of these

variables is shown. This figure shows that there are persistent liquidity effects in this model

both in the sense that a movement in the nominal interest rate is associated with a movement

in the money growth rate in the opposite direction and also in the sense that a movement in

the nominal interest rate is associated, at least at first, with a movement in the real interest

rate (the difference between the nominal interest rate and the growth of the price level). The

aggregate price level again appears “sticky” in the sense that inflation does not respond much

to the movement in the nominal interest rate.13

In sum, these results indicate that our model can account for a substantial delay in

the response of the price level to an exogenous shock to the nominal interest rate and it does

so simply on the basis of the endogenous response of velocity to that interest rate shock.

5. Conclusion
In this paper, we have put forward a simple inventory-theoretic model of the demand

for money and shown, in that model, that the price level does not respond immediately to

an exogenous increase in the money supply. Instead, there is an extended period of price

sluggishness that occurs because the exogenous increase in the money supply leads, at least

initially, to an endogenous decrease in the velocity of money. We have argued that if this

simple model is used to analyze the dynamics of money and velocity using a relatively broad

measure of money, then it produces a sluggish response of the price level similar to that

estimated in the VAR literature on the response of the economy to monetary policy shocks.

In keeping this model simple, we have abstracted from a number of issues that might

13As explained above, we have imposed that the reponse of prices to money be zero in the first period. We
have imposed no constraint in the effect of money on price in any subsequent periods.
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play an important role in the development of a more complete model. First, we have simply

assumed that households have the opportunity to transfer funds between their brokerage and

bank accounts only every N periods and have not allowed households to alter the timing of

these transactions after paying some fixed cost. Perhaps it will be possible to extend this work

to allow households to choose when to be active subject to a fixed cost using the techniques

developed by Dotsey, King, and Wolman (1999).

Second, we have abstracted from any heterogeneity across households in their average

money holdings and the corresponding frequency with which they transact between their bro-

kerage and bank accounts. One might suspect that such heterogeneity would be important

if wealthy households, those that hold the bulk of the financial assets in the economy, trans-

fer funds between their brokerage and bank accounts more frequently than poor households.

Adding such heterogeneity is relatively easy in this model since one can always include addi-

tional types of households with different assumed trading frequencies. The precise response

of prices to monetary shocks in this kind of model will certainly depend on the details of the

heterogeneity across households that one assumes. To date, we have not found clear results

relating the details of such heterogeneity to implications for price sluggishness.

Third, we have abstracted from any differences between base money and our broader

money aggregate and hence our model has no fluctuations in the money multiplier. Certainly,

in the data, there is also sluggishness in the response of prices to changes in the quantity

of base money that is due, at least in part, to fluctuations in the money multiplier. In this

paper, we focus only on the sluggish response of prices to changes in the quantity of a broad

measure of money and leave aside the study of the links between base money and broader

measures of money.

Having abstracted from these and other potentially important questions, we cannot

draw many specific quantitative conclusions from this analysis. We do, however, conclude

with the broader point that the dynamics of money demand may play an important role in

accounting for the sluggish response of prices to changes in monetary policy.
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Figure 2: But in the short run M/c up, v down
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Figure 4: "Sawtoothed" money holdings (N = 15, γ = 0)
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Figure 6: Money up, velocity down, prices sluggish (N = 15, γ = 0)
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Figure 7: Household financial assets relative to 
personal consumption expenditure
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Figure 8: Model and data velocity (N = 15, γ = 0). HP filtered.
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Figure 9: Model and data velocity (N = 38, γ = 0.6). HP filtered.
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Figure 10: Sluggish price response to persistent interest rate shock
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Figure 11: Large liquidity effects (N = 38, γ = 0.6)
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(a) Short-Term Treasury Rate less own rate

Asset 1959-2001 1990-2001

Currency 5.22 4.32

Demand Deposits 1.98 1.33

Savings Deposits 1.50 1.71

Time Deposits 1.80 2.47

Retail Money Market Funds* -0.33 -0.11

*1973-2001

(b) Short-Term Treasury Rate less own rate

Aggregate 1959-2001 1990-2001

M1 2.97 2.71

M2 1.80 1.84

M2 less 1.95 2.17
Retail Money Market Funds

http://www.stls.frb.org/research/msi/index.html
These data are collected as part of the St. Louis Fed's project to construct
Divisia monetary services indices

Opportunity cost data constructed from the spreadsheets TB1ASAM.WKS
and ADJSAM.WKS available on the website of the Federal Reserve Bank of St. Louis

Table 1

Opportunity Cost of Various Monetary Assets

average opportunity cost in percentage points

average opportunity cost in percentage points




