316-632 INTERNATIONAL MONETARY ECONOMICS

Chris Edmond 〈cpedmond@unimelb.edu.au〉

Digression on log-linearization

A simple method for approximating the solution to a dynamic stochastic model is to: (i) computing the non-stochastic steady state, (ii) log-linearize the model around the steady state, and (iii) solving the resulting system of difference equations. To illustrate this procedure, suppose we have a closed economy RBC model. In what follows, I assume that you are comfortable enough with the event-tree notation that you could make this exposition more rigorous if you were so inclined.

Consider the social planning problem of maximizing utility

$$
\mathrm{E}_{0}\left\{\sum_{t=0}^{\infty} \beta^{t}\left[U\left(c_{t}\right)+V\left(\ell_{t}\right)\right]\right\}
$$

subject to a resource constraint

$$
c_{t}+k_{t+1}=z_{t} F\left(k_{t}, n_{t}\right)+(1-\delta) k_{t}
$$

with time constraint

$$
n_{t}+\ell_{t}=1
$$

I assume that period utility is separable between consumption and leisure for expository convenience. Finally, let log technology follows an $\mathrm{AR}(1)$,

$$
\log \left(z_{t+1}\right)=\phi \log \left(z_{t}\right)+\varepsilon_{t+1}, \quad 0<\phi<1
$$

where ε_{t+1} is Gaussian white noise. Since this process has unconditional mean of zero, the long run average productivity level is $z=1$. (I will use unadorned letters to denote steady state values).

The first order conditions associated with this problem include the consumption Euler equation

$$
1=\mathrm{E}_{t}\left\{\beta \frac{U^{\prime}\left(c_{t+1}\right)}{U^{\prime}\left(c_{t}\right)}\left[1+z_{t+1} F_{k}\left(k_{t+1}, n_{t+1}\right)-\delta\right]\right\}
$$

and the labor supply condition

$$
\frac{V^{\prime}\left(1-n_{t}\right)}{U^{\prime}\left(c_{t}\right)}=z_{t} F_{n}\left(k_{t}, n_{t}\right)
$$

along with the resource constraint.

Non-stochastic steady state

Suppose that we turn off the shocks. Let $z=1$ and solve for steady state capital, consumption and employment (k, c, n). These satisfy the Euler equation

$$
1=\beta\left[1+F_{k}(k, n)-\delta\right]
$$

the labor supply condition

$$
\frac{V^{\prime}(1-n)}{U^{\prime}(c)}=F_{n}(k, n)
$$

and the resource constraint.

$$
c+\delta k=F(k, n)=y
$$

These constitute three non-linear equations in three unknowns. In principle, we could solve them on a computer.

Log-linearization

Define the log-deviation of a variable x_{t} from its steady state value as

$$
\hat{x}_{t}=\log \left(\frac{x_{t}}{x}\right)
$$

With this notation, a variable is at steady state when its log-deviation is zero. The popularity of this method comes from the units-free nature of the variables. Log-deviations are approximate percentage deviations from steady state and the coefficients of log-linear models are elasticities. Suppose that we have a production function

$$
y_{t}=F\left(k_{t}, n_{t}\right)
$$

Then the log-linear approximation around $\left(\hat{k}_{t}, \hat{n}_{t}\right)=0$ is

$$
y \hat{y}_{t}=F_{k}(k, n) k \hat{k}_{t}+F_{n}(k, n) n \hat{n}_{t}
$$

which is often written

$$
\hat{y}_{t}=\frac{F_{k}(k, n) k}{F(k, n)} \hat{k}_{t}+\frac{F_{n}(k, n) n}{F(k, n)} \hat{n}_{t}
$$

so that the coefficients on the log-deviations \hat{k}_{t}, \hat{n}_{t} are elasticities. A 1% increase in \hat{k}_{t} near the steady-state gives approximately a $\frac{F_{k}(k, n) k}{F(k, n)} 100 \%$ increase in \hat{y}_{t}.

Let the production function be $y=F(k, n)=k^{\theta} n^{1-\theta}$ so that

$$
\hat{y}_{t}=\theta \hat{k}_{t}+(1-\theta) \hat{n}_{t}
$$

Now let the utility functions be

$$
\begin{aligned}
U(c) & =\frac{c^{1-\sigma}}{1-\sigma} \Longrightarrow \widehat{U^{\prime}\left(c_{t}\right)}=\frac{U^{\prime \prime}(c) c}{U^{\prime}(c)} \hat{c}_{t}=-\sigma \hat{c}_{t} \\
V(\ell) & =\frac{\ell^{1-\eta}}{1-\eta} \Longrightarrow \widehat{V^{\prime}\left(\ell_{t}\right)}=\frac{V^{\prime \prime}(\ell) \ell}{V^{\prime}(\ell)} \hat{\ell}_{t}=-\eta \hat{\ell}_{t}
\end{aligned}
$$

Using the time constraint, we also know that $\ell=1-n$ and that

$$
(1-n) \hat{\ell}_{t}+n \hat{n}_{t}=0
$$

so that we can also write

$$
\left.V^{\prime} \widehat{(1-n} t\right)=\frac{n}{1-n} \eta \hat{n}_{t}
$$

This means that the log-linear versions of our equations are

$$
\begin{aligned}
0 & =\mathrm{E}_{t}\left\{-\sigma\left(\hat{c}_{t+1}-\hat{c}_{t}\right)+\frac{1}{\beta}\left[\hat{z}_{t+1}+(\theta-1)\left(\hat{k}_{t+1}-\hat{n}_{t+1}\right)\right]\right\} \\
0 & =\left(\frac{n}{1-n} \eta+\theta\right) \hat{n}_{t}+\sigma \hat{c}_{t}-\hat{z}_{t}-\theta \hat{k}_{t} \\
0 & =c \hat{c}_{t}+k \hat{k}_{t+1}-y \hat{z}_{t}-[\theta y+(1-\delta) k] \hat{k}_{t}-(1-\theta) y \hat{n}_{t} \\
\hat{z}_{t+1} & =\phi \hat{z}_{t}+\varepsilon_{t+1}
\end{aligned}
$$

Method of undetermined coefficients

We now have a system of linear difference equations. Let me introduce the notation

$$
X_{t}=\hat{k}_{t+1}, \quad Y_{t}=\binom{c_{t}}{n_{t}}, \quad Z_{t}=\hat{z}_{t}
$$

(Notice the timing convention! This is because \hat{k}_{t+1} is chosen at date t). Following the notation in Uhlig (1999), we have the system of equations

$$
\begin{aligned}
0 & =A X_{t}+B X_{t-1}+C Y_{t}+D Z_{t} \\
0 & =\mathrm{E}_{t}\left\{F X_{t+1}+G X_{t}+H X_{t-1}+J Y_{t+1}+K Y_{t}+L Z_{t+1}+M Z_{t}\right\} \\
Z_{t+1} & =N Z_{t}+\varepsilon_{t+1}
\end{aligned}
$$

where the first equation captures the "static" resource constraint and labor supply conditions so that A and B are 2-by-1, C is 2-by-2, D is 2-by-1. The second equation captures the "forward-looking" consumption Euler equation, and the last is the law of motion for the exogenous shocks.

This notation is a little too general. For this particular model, the coefficients G, H and M are all zero so that in what follows I will simply write the forward looking equation as

$$
0=\mathrm{E}_{t}\left\{F X_{t+1}+J Y_{t+1}+K Y_{t}+L Z_{t+1}\right\}
$$

The key step in this procedure is to "guess" that solutions to the model take the form

$$
\begin{aligned}
X_{t} & =P X_{t-1}+Q Z_{t} \\
Y_{t} & =R X_{t-1}+S Z_{t}
\end{aligned}
$$

for unknown coefficient matrices P, Q, R, S. For this model, P and Q are scalars while R and S are 2-by-1. We now establish what restrictions the RBC model puts on these unknown coefficient matrices. To do this, plug the guesses into the system of static equations to get

$$
\begin{aligned}
0 & =A\left(P X_{t-1}+Q Z_{t}\right)+B X_{t-1}+C\left(R X_{t-1}+S Z_{t}\right)+D Z_{t} \\
& =(A P+B+C R) X_{t-1}+(A Q+D+C S) Z_{t}
\end{aligned}
$$

But for this to hold identically for any state X_{t-1} and any shock Z_{t}, it must be the case that

$$
\begin{aligned}
& 0=A P+B+C R \\
& 0=A Q+D+C S
\end{aligned}
$$

Supposing that the 2-by-2 matrix C is invertible, this is the same as

$$
\begin{aligned}
R & =-C^{-1}(A P+B) \\
S & =-C^{-1}(A Q+D)
\end{aligned}
$$

So once we have solved for the coefficients for the evolution of the endogenous state variables, namely P and Q, we can easily back out the coefficients for the evolution of the control variables. Now plugging our guesses into the system of Euler equations gives

$$
\begin{aligned}
0 & =\mathrm{E}_{t}\left\{F X_{t+1}+J Y_{t+1}+K Y_{t}+L Z_{t+1}\right\} \\
& =\mathrm{E}_{t}\left\{F\left(P X_{t}+Q Z_{t+1}\right)+J\left(R X_{t}+S Z_{t+1}\right)+K\left(R X_{t-1}+S Z_{t}\right)+L Z_{t+1}\right\} \\
& =\mathrm{E}_{t}\left\{F\left(P\left(P X_{t-1}+Q Z_{t}\right)+Q Z_{t+1}\right)+J\left(R\left(P X_{t-1}+Q Z_{t}\right)+S Z_{t+1}\right)+K\left(R X_{t-1}+S Z_{t}\right)+L Z_{t+1}\right\} \\
& =\mathrm{E}_{t}\left\{F P^{2} X_{t-1}+F P Q Z_{t}+F Q Z_{t+1}+J R P X_{t-1}+J R Q Z_{t}+J S Z_{t+1}+K R X_{t-1}+K S Z_{t}+L Z_{t+1}\right\}
\end{aligned}
$$

Now taking the conditional expectations

$$
0=F P^{2} X_{t-1}+F P Q Z_{t}+F Q N Z_{t}+J R P X_{t-1}+J R Q Z_{t}+J S N Z_{t}+K R X_{t-1}+K S Z_{t}+L N Z_{t}
$$

And on collecting terms

$$
0=\left(F P^{2}+J R P+K R\right) X_{t-1}+(F P Q+F Q N+J R Q+J S N+K S+L N) Z_{t}
$$

Hence our restrictions are

$$
\begin{aligned}
& 0=F P^{2}+J R P+K R \\
& 0=F P Q+F Q N+J R Q+J S N+K S+L N
\end{aligned}
$$

Now plug the equation $R=-C^{-1}(A P+B)$ into the first set of restrictions to get

$$
\begin{aligned}
0 & =F P^{2}-J\left(C^{-1}(A P+B)\right) P-K\left(C^{-1}(A P+B)\right) \\
& =\left(F-J C^{-1} A\right) P^{2}-\left(J C^{-1} B+K C^{-1} A\right) P-K C^{-1} B
\end{aligned}
$$

This is a quadratic equation in the unknown P. We solve it and choose the stable root (this is
equivalent to imposing a transversality condition). Once we have determined P, we also have $R=-C^{-1}(A P+B)$.

Turning now to the second set of restrictions from the forward-looking equation, we use the fact that Q is a scalar and that $S=-C^{-1}(A Q+D)$ to write

$$
\begin{aligned}
0 & =(F P+F N+J R) Q-J\left(C^{-1}(A Q+D)\right) N-K C^{-1}(A Q+D)+L N \\
& =\left(F P+F N+J R-J C^{-1} A N-K C^{-1} A\right) Q-J C^{-1} D N-K C^{-1} D+L N
\end{aligned}
$$

or

$$
Q=\frac{J C^{-1} D N+K C^{-1} D-L N}{F P+F N+J R-J C^{-1} A N-K C^{-1} A}
$$

which we can compute because we have already solved for P and R and all the other coefficients were known to begin with. Finally, we can recover the remaining coefficient via $S=-C^{-1}(A Q+D)$.

So, after all that, we have a method for solving for the unknown coefficients. To recap: we solve for the non-stochastic steady state and construct the known matrices of coefficients. We then solve a quadratic equation for the critical P. We then back out the associated R so that we have all the coefficients on the endogenous state variables. Using P and R we solve for the coefficients on the shocks, Q and S. And then we're done and ready to do interesting things like simulating the model by iterating on the linear laws of motion

$$
\begin{aligned}
X_{t} & =P X_{t-1}+Q Z_{t} \\
Y_{t} & =R X_{t-1}+S Z_{t} \\
Z_{t+1} & =N Z_{t}+\varepsilon_{t+1}
\end{aligned}
$$

