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Introduction to consumption-based asset pricing

We will begin our brief look at asset pricing with a review of the essentials of Robert Lucas’s

(1978) representative agent approach to asset pricing. We will also use this model to introduce an

equilibrium concept – recursive competitive equilibrium – that we will make use of when studying

decentralized problems.

A. Lucas trees

Consider an endowment economy with a single type of durable asset. There are a large number

of identical households each endowed with a single, identical, non-depreciating fruit tree, s0 = 1.

A fruit tree produces dividends (fruit), xt, according to some exogenous stochastic process.

Dividends cannot be stored, the only store of value are the trees. We are interested in pricing the

assets (trees). Denote the price of a tree by pt. The representative consumer’s sequence problem is

to choose a sequence of shares {st+1} (claims to the ownership of the representative fruit tree) to
maximize

E0

( ∞X
t=0

βtU(ct)

)
, 0 < β < 1

subject to, for each t = 0, 1, ...

ct + ptst+1 ≤ (pt + xt)st

ct, st+1 ≥ 0

given s0, x0

and an exogenous stochastic process for the dividends.

The household’s expenditure is constrained by their wealth, wt ≡ (pt + xt)st (the value of

the stock of trees held at t plus the value of the period flow of dividends per tree at t). Wealth can

either be eaten (as a consumption good) or used to buy more trees for delivery next period.

The sequence problem can be reformulated as a dynamic programming problem

V (s, x) = max
s0≥0

{U(c) + βE[V (s0, x0) | x]}
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subject to

c+ p(x)s0 ≤ [p(x) + x]s

and a given Markov process that defines transition probabilities for the dividends. In this formula-

tion, the individual’s state is (s, x). A solution to this dynamic programming problem is a policy

function g of the individual state that gives s0 = g(s, x). The price of the asset p(x), is a function of

just the aggregate state of the economy, namely x, and an individual take this function as given

when solving their dynamic programming problems.

Notice that we can also think of wealth itself being an individual-specific state and instead

write

V (w, x) = max
s0≥0

{U(c) + βE[V (w0, x0) | x]}

subject to

s0 =
1

p(x)
(w − c)

w0 =
p(x0) + x0

p(x)
(w − c)

where the household’s budget constraint has been combined with the definition of next period’s

wealth, w0 = [p(x0) + x0]s0, to construct a law of motion for wealth. The gross rate of return on

the asset is given by [p(x0) + x0]/p(x).

There is no production in this economy, so there are no firms and we can go straight to the

equilibrium concept.

Definition. A recursive competitive equilibrium is a collection of functions: (i) a value

function V , (ii) a policy function g, and (iii) a pricing function p, such that:

1. Given the pricing function p, the value function V and the policy function g solve the house-

hold’s dynamic programming problem, and

2. Markets clear

g(w,x) = 1 for all (w, x)

From the market clearing condition, g(w,x) = 1, the flow budget constraint requires

c+ p(x) · 1 = [p(x) + x] · 1
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or

c = x

This is the resource constraint for the economy. Since every household is the same, the equilibrium

outcome (using the budget constraint) must be the no-trade outcome. Since every household wants

to be on the same side of the market, the only outcome can be that every household simply retains

ownership of its initially endowed tree. We are interested in finding the prices that support this

no trade equilibrium.

Now let’s think about how to characterize the price of the tree. The FOC for the household’s

problem is

U 0(c)p(x) = βE

½
∂V (w0, x0)

∂w0
[p(x0) + x0]

¯̄̄̄
x

¾
and the envelope condition gives

∂V (w, x)

∂w
= U 0(c)

Combining these conditions, we can write

U 0(c)p(x) = E
©
βU 0(c0)[p(x0) + x0) | xª

Using the equilibrium condition that each period’s consumption always equals that period’s divi-

dends, c = x, we can simplify to

U 0(x)p(x) = E
©
βU 0(x0)[p(x0) + x0) | xª

Now introduce a new function ψ(x) defined by

ψ(x) ≡ U 0(x)p(x)

which we can think of as the marginal utility loss incurred to obtain an extra unit of the tree. We

have to solve a single functional equation in this new unknown

ψ(x) = E
©
βψ(x0) + βU 0(x0)x0 | xª

If we can solve the functional equation for ψ(x) then we have the price of the tree (since U 0(x) is

known from the primitives of the model). This functional equation is typically easier to solve than
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a Bellman equation because it does not involve a max operator, just first order conditions. Indeed,

if x is defined by a Markov chain then solving this functional equation problem just involves solving

a finite system of linear equations.

Closed form example

Let U(c) = log(c). The relevant operator, say T , is defined by

(Tψ)(x) = E
©
βψ(x0) + β | xª

We want to find a ψ such that Tψ = ψ, which we can do by iterating until a functional form is

preserved.

Step 1. Guess that ψ0(x) = 0 all x. This implies

(Tψ0)(x) = E {β0 + β | x} = β

(well, that was silly anyway – this is a model with an always positive marginal utility of

consumption, so it would be surprising indeed if the asset price was zero which is what it

would have to be if ψ0(x) = 0 all x).

Step 2. OK, guess instead that ψ1(x) = A > 0 all x. This implies

(Tψ1)(x) = E {βA+ β | x} = β(A+ 1)

This time the T operation preserves the functional form. Now let’s use the method of

undetermined coefficients to solve for this unknown coefficient A. If A = β(A + 1), then

A = β/(1− β), and we have our functional form for ψ(x)

ψ(x) =
β

1− β
all x

and so

p(x) =
β

1− β
x

We have found a function mapping the aggregate state of the economy x into a price for the

tree, p(x).
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Notice that in this special example, the distribution over future dividends did not matter. In

fact, future dividends don’t matter at all in the logarithmic case: all that matters is the subjective

discount rate and how much fruit there is today (the income and substitution effects just exactly

offset each other). This log example is quite counterfactual, since it implies that the price/dividend

ratio is a constant

ψ(x) =
p(x)

x
=

β

1− β
all x

Once we have solved for the pricing function, we can compute other objects of interest. For

example, with log utility the gross return on a Lucas tree is

R(x0, x) ≡ p(x0) + x0

p(x)
=

β
1−βx

0 + x0

β
1−βx

=
1

β

x0

x

Hence the gross return depends on the pure rate of time discount through the constant β−1 term

plus the (random) growth rate of the supply of fruit.

Euler equations

An alternative approach to asset pricing is to work more closely with the sequence formulation of

the problem. We can write the fundamental functional equation of the problem, the equilibrium

consumption Euler equation, as

U 0(xt)pt = Et
©
βU 0(xt+1)(pt+1 + xt+1)

ª
and so

pt = Et

½
β
U 0(xt+1)
U 0(xt)

(pt+1 + xt+1)

¾
or

1 = Et

½
β
U 0(xt+1)
U 0(xt)

µ
pt+1 + xt+1

pt

¶¾
= Et

½
β
U 0(xt+1)
U 0(xt)

Rt+1

¾
We can now recursively substitute forward using pt+j+1 to eliminate pt+j and the law of iterated

expectations, that Et {Et+1 {pt+j}} = Et {pt+j} to obtain

pt = lim
T→∞

Et

(
TX
t=1

βj
U 0(xt+j)
U 0(xt)

xt+j

)
+ lim

T→∞
Et

½
βT+1

U 0(xt+T+1)
U 0(xt)

pt+T+1

¾
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As usual, we will presume – or make boundedness assumptions on the utility function sufficient to

ensure – that the limiting price term goes to zero. We can then write the solution to the difference

equation as

pt = Et

( ∞X
t=1

βj
U 0(xt+j)
U 0(xt)

xt+j

)
The expression

Mt+j = βj
U 0(xt+j)
U 0(xt)

is a random variable – often referred to as a stochastic discount factor – and reflects both the

usual time preference of the household and its desire for smoothness in consumption (aversion to

bumpy consumption paths).

B. Contingent claims markets

A one-period-ahead contingent claim is an asset that delivers one unit of the consumption good

(fruit) if and only if a particular state is realized. Suppose that there is only a finite number of

possible states with transitions given by a Markov chain. Let π(x0, x) = Pr(xt+1 = x0|xt = x) denote

the transition probabilities for state x0 given state x.

Denote by q(x0, x) the price in state x of a contingent claim to one unit of the consumption

good if x0 is realized in the next period. The price of a sure claim to a unit of the consumption good

is the price of a claim to one unit of the consumption good in the next period no matter what state

is actually realized next period. Thus, the price of a sure claim in state x is found by summing

this pricing kernel q(x0, x) over all x0. We can think of a sure claim to a unit of the consumption

good as a safe one-period asset (a one-period pure discount bond).

Consider an individual household that is endowed with a tree and can trade in markets for

trees and markets for contingent claims for all possible states. Given wealth w and this period’s

state x, the individual household’s dynamic programming problem is

V (x,w) = max
s0≥0,B(x0)≥0

{U(c) + β
X
x0

V (x0, w0)π(x0, x)}

where the maximization is over choices of shares s0 and a portfolio of contingent claims B(x0) and

is subject to the budget constraint

c+ p(x)s0 +
X
x0

q(x0, x)B(x0) ≤ w
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with wealth

w = [p(x) + x]s+B(x)

As well as a quantity of trees, each household chooses a quantity of contingent claims for each

future state x0. This vector of quantities is summarized by B with typical element B(x0). Policy

functions are

s0 = gs(x,w)

B(x0) = gB(x
0, x, w)

Definition. A recursive competitive equilibrium is a collection of functions: (i) a value

function V , (ii) policy functions gs,gB and (iii) pricing functions p and q such that:

1. Given the pricing functions p and q, the value function v and the individual decision rules gs

and gB solve the household’s dynamic programming problem,

2. Markets clear

s0 = gs(x,w) = 1 for all (x,w)

B(x0) = gB(x
0, x, w) = 0 for all (x,w) and all x0

Goods market clearing is then

c = x

The pricing functions are again characterized using the first order conditions for the house-

hold’s choice of trees and contingent claims. Leaving aside the trees for the moment, we can find

the contingent claims pricing kernel by examining the first order condition for B(x0) and the related

envelope condition. The first order condition for some typical state x0 and associated B(x0) is

B(x0) : U 0(c)q(x0, x) = β
∂V (x0, w0)

∂w0
π(x0, x)

The envelope condition requires
∂V (x,w)

∂w
= U 0(c)
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which implies the Euler equation

U 0(c)q(x0, x) = βU 0(c0)π(x0, x)

The equilibrium Euler equation, where c = x, is then just

U 0(x)q(x0, x) = βU 0(x0)π(x0, x)

or

q(x0, x) = β
U 0(x0)
U 0(x)

π(x0, x)

so the pricing kernel depends on the household’s impatience to consume, attitude to bumpiness in

consumption and the probability transition density between states. It’s also pretty clear that the

pricing kernel is intimately related to the stochastic discount factor defined above.

The price of a sure claim to a single unit of the consumption good is

X
x0

q(x0, x) =
X
x0

β
U 0(x0)
U 0(x)

π(x0, x)

= E

½
β
U 0(x0)
U 0(x)

¯̄̄̄
x

¾

Indeed, the price of any complicated asset can be found in the same way. Let ϕ be the payoff

function for an asset that pays ϕ(x) in state x. Then the price of the asset, pϕ(x), is

pϕ(x) =
X
x0

q(x0, x)ϕ(x0)

=
X
x0

β
U 0(x0)
U 0(x)

ϕ(x0)π(x0, x)

= E

½
β
U 0(x0)
U 0(x)

ϕ(x0)
¯̄̄̄
x

¾

Alternatively, we can write this in terms of a gross return Rϕ(x
0, x) = ϕ(x0)

pϕ(x)
as

1 = E

½
β
U 0(x0)
U 0(x)

Rϕ(x
0, x)

¯̄̄̄
x

¾

Since shares in the tree have payoff ϕ(x0) = p(x0) + x0 we immediately have the consumption Euler
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equation for returns on Lucas trees

1 = E

½
β
U 0(x0)
U 0(x)

p(x0) + x0

p(x)

¯̄̄̄
x

¾

In general, we can synthesize the price of other assets given the prices of all the contingent

claims. Given the pricing kernel, the price of any payoff can be expressed as a linear combination

of the form pϕ = E{Mϕ}. The neat thing about this formula is that ϕ can describe the payoffs
of an enormously complicated asset – say a particularly exotic option – but the price pϕ is

straightforward to compute if we know how to calculate the pricing kernel.

A huge literature in economics and finance uses alternative assumptions about preferences

(different specifications of U) and data on consumption, c = x, to estimate and test asset pricing

models.

C. Consumption CAPM

We can obtain a capital asset pricing model (CAPM) relationship in the following way. Let Rf (x)

denote the gross return on a sure claim to a unit of consumption next period. The notation Rf is

designed to indicate "risk free", but this is a little misleading in the sense that Rf (x) is only risk

free one-period-ahead. In general this return (equivalently, the price of a one-period-ahead risk free

bond) does depend on the current state. More specifically, the return satisfies

1 = E

½
β
U 0(x0)
U 0(x)

Rf (x)

¯̄̄̄
x

¾

and so the price is
1

Rf (x)
= E

½
β
U 0(x0)
U 0(x)

¯̄̄̄
x

¾
Now consider a bona-fide risky asset with gross return Rϕ(x

0, x) contingent on next period’s state.

This return satisfies

1 = E

½
β
U 0(x0)
U 0(x)

Rϕ(x
0, x)

¯̄̄̄
x

¾
= E

½
β
U 0(x0)
U 0(x)

¯̄̄̄
x

¾
E
©
Rϕ(x

0, x)
¯̄
x
ª
+ Cov

½
β
U 0(x0)
U 0(x)

, Rϕ(x
0, x)

¯̄̄̄
x

¾
= E

½
Rϕ(x

0, x)
Rf (x)

¯̄̄̄
x

¾
+ Cov

½
β
U 0(x0)
U 0(x)

, Rϕ(x
0, x)

¯̄̄̄
x

¾
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or

E

½
Rϕ(x

0, x)−Rf (x)

Rf (x)

¯̄̄̄
x

¾
= −Cov

½
β
U 0(x0)
U 0(x)

, Rϕ(x
0, x)

¯̄̄̄
x

¾
The expected excess return on an asset is negatively related to the covariance of that asset’s gross

return with the stochastic discount factor. This relationship is often written in time series notation

as

Et

(
Rϕ
t+1 −Rf

t

Rf
t

)
= −Covt

½
β
U 0(xt+1)
U 0(xt)

, Rϕ
t+1

¾
The term on the left hand side is the expected excess return on the asset with payoffs ϕ over the

risk free return (the risk premium). To see this, notice that Rϕ
t+1/R

f
t
∼= 1 + rϕt+1 − rft where the

little rs denote net returns. Hence

Et

(
Rϕ
t+1 −Rf

t

Rf
t

)
∼= Et{rϕt+1 − rft } = Et{rϕt+1}− rft

The expected excess return is proportional to the covariance of the return of that asset with

the stochastic discount factor. A high risk premium is demanded of an asset that is poor from

an insurance perspective, i.e., an asset that has a high return only when the marginal utility of

consumption is low (and hence consumption itself is relatively high) so that the covariance is a large

negative number. Put differently, an asset is more risky the more its return co-varies negatively with

the stochastic discount factor. Notice that in general the risk premium is time- and state-varying.

Chris Edmond

10 September 2004
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