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Introduction to stochastic dynamic programming

If the shocks have the Markov property, we do not need to keep track of the entire history and we

can form a recursive version of the stochastic growth model by considering a value function V (k, z)

in two state variables, the endogenous capital stock k and the exogenous technology shock z.

The Bellman equation for this problem is

V (k, z) = max
k0≥0

{U(c) + βE[V (k0, z0)|z]}

where the maximization is subject to the resource constraint

c+ k0 ≤ zf(k) + (1− δ)k

and a given law of motion for the exogenous technology shocks. (For example, the technology

shocks might obey a stochastic difference equation or a Markov chain). Notice that E[V (k0, z0)|z] is
the expectation of the value function evaluated at next period’s state conditional on this period’s

realization of the technology shock, z. As with deterministic dynamic programming, the right hand

side of the Bellman equation defines an operator. The value function V is a fixed point of this

operator. Given a value function, we can easily solve for a policy function k0 = g(k, z) that maps

the state into choices for capital accumulation. From the resource constraint, this will then give a

policy function for consumption, namely c = zf(k) + (1− δ)k − g(k, z).

The first order condition for the maximization problem on the right hand side of the Bellman

equation is

U 0(c) = βE

½
∂V (k0, z0)

∂k0

¯̄̄̄
z

¾
while the envelope condition is

∂V (k, z)

∂k
= U 0(c)[1 + zf 0(k)− δ]

so we again have the stochastic Euler equation

U 0(ct) = βEt
©
U 0(ct+1)[1 + zt+1f

0(kt+1)− δ]
ª
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Suppose that the technology shocks follow a stochastic difference equation. Then the capital

stock also follows a difference equation, namely

kt+1 = g (kt, zt)

If we log-linearize this difference equation, we get

k̂t+1 =
gk
¡
k̄, z̄

¢
k̄

g
¡
k̄, z̄

¢ k̂t +
gz
¡
k̄, z̄

¢
z̄

g
¡
k̄, z̄

¢ ẑt

The approximate elasticities of the policy function are exactly the coefficients (that we called P and

Q) that we solve for with the method of undetermined coefficients.

A. Closed form example

One particular parametric example of the stochastic growth model can be solved in closed form (i.e.,

without any need for approximations). Let the period utility function be U(c) = log(c) and let the

production function be f(k) = kα with full depreciation, δ = 1. Then the policy function is

k0 = g(k, z) ≡ αβzkα

Interestingly, this solution does not depend on the driving process for technology. To see that this

solution works, notice that it satisfies the resource constraint so long as consumption is given by

c = (1− αβ)zkα

Now the stochastic Euler equation requires

1

c
= βE

½
1

c0
αz0(k0)α−1

¯̄̄̄
z

¾

or

1

(1− αβ)zkα
= βE

½
1

(1− αβ)z0(k0)α
αz0(k0)α−1

¯̄̄̄
z

¾
= αβE

½
1

(1− αβ)k0

¯̄̄̄
z

¾
= αβE

½
1

(1− αβ)αβzkα

¯̄̄̄
z

¾
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=
1

(1− αβ)zkα

so the proposed solution indeed satisfies the stochastic Euler equation.

B. Value function iteration

We now show that this guess can be obtained by value function iteration. We will be iterating on

Bellman equations of the form

Vj+1 = TVj

where for j = 0, 1, 2, ....

TVj(k, z) = max
k0≥0

{log[zf(k)− k0] + βE[Vj(k
0, z0)|z]}

Begin with the guess

V0(k, z) = 0 all k, z

Then applying the T operator gives

V1(k, z) = TV0(k, z)

= max
k0≥0

{log[zkα − k0] + βE[V0(k
0, z0)|z]}

= max
k0≥0

{log[zkα − k0] + β0}
= log[zkα]

(since the optimal policy if V0(k0, z0) = 0 is to set k0 = 0 too. If the value associated with next

period’s state is zero, there is no point saving).

Now our new estimate of the value function is

V1(k, z) = TV0(k, z) = log(z) + α log(k)

And again applying the T operator

V2(k, z) = TV1(k, z)

= max
k0≥0

{log[zkα − k0] + βE[log(z0) + α log(k0)|z]}
= max

k0≥0
{log[zkα − k0] + αβ log(k0) + βE[log(z0)|z]}

3



The maximization on the right hand side is maximization of a strictly concave function (notice

that the conditional expectation simply defines an additive constant that will not affect the optimal

policy, though it will affect the value function). The necessary and sufficient condition for a global

maximum is

− 1

zkα − k0
+

αβ

k0
= 0

Solving this first order condition gives the policy associated with the estimate V1(k, z), namely

k0 =
αβ

1 + αβ
zkα

Hence we have

V2(k, z) = TV1(k, z)

= max
k0≥0

{log[zkα − k0] + αβ log(k0) + βE[log(z0)|z]}

= log

·
1

1 + αβ
zkα

¸
+ αβ log

·
αβ

1 + αβ
zkα

¸
+ βE{log(z0)|z}

This is of the form

V2(k, z) = A+B log(k) + C log(z)

for coefficients A,B,C. Now let’s use this functional form to make a new estimate

V3(k, z) = TV2(k, z)

= max
k0≥0

{log[zkα − k0] + βE[A+B log(k0) + C log(z0)|z]}
= max

k0≥0
{log[zkα − k0] + βA+ βB log(k0) + βCE[log(z0)|z]}

Again, computing the first order condition

− 1

zkα − k0
+

βB

k0
= 0

and solving for the optimal policy

k0 =
βB

1 + βB
zkα
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Hence we have

V3(k, z) = TV2(k, z)

= max
k0≥0

{log[zkα − k0] + βA+ βB log(k0) + βCE[log(z0)|z]}

= log

·
1

1 + βB
zkα

¸
+ βA+ βB log

·
βB

1 + βB
zkα

¸
+ βCE{log(z0)|z}

Just as with the last round of iterations, we are going to get a value function that is of the form

V3(k, z) = A+B log(k) + C log(z)

All we have to do to complete our solution is to make sure that the unknown coefficients are

consistent. In order to identify the coefficient on the policy function we only need to know the right

value for B, though we need to know all of A,B,C to get the whole value function. In particular,

B solves

B log(k) = α log(k) + βBα log(k)

or

B =
α

1− αβ

Hence

k0 =
βB

1 + βB
zkα =

β α
1−αβ

1 + β α
1−αβ

zkα = αβzkα

which was our original guess!

Some tedious algebra shows that the complete solution for the value function for this para-

metric example is

V (k, z) = A+B log(k) +C log(z)

where the coefficients are

A =
1

1− β

·
log(1− αβ) +

αβ log(αβ)

1− αβ
+

βµ

1− αβ

¸
, µ ≡ E0{log(z)}

B =
α

1− αβ

C =
1

1− αβ

(See if you can show this yourself!)
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C. Stochastic dynamics

Now let’s look at the stochastic dynamics implied by this solution. In logs,

log(kt+1) = log(αβ) + α log(kt) + log(zt)

Notice that conditional on this period’s technology shock, the capital stock for next period is not

random. Nonetheless, output at t+1 is random as indeed is the capital stock in two period’s time.

Notice that

log(yt) = log(zt) + α log(kt)

so we can write

log(kt+1) = log(αβ) + [log(yt)− log(zt)] + log(zt)
= log(αβ) + log(yt)

which gives us a relationship between log output at t and at t+ 1, namely

log(yt+1) = α log(αβ) + α log(yt) + log(zt+1)

Although log(kt+1) is not random, log(yt+1) is and its statistical properties depend mostly on the

capital intensity α and on the process for log technology. For example, if log technology is IID, then

log output is an autoregression with persistence α.

We can solve for the statistical properties of various objects of interest by solving the law of

motion for the capital stock. To do so, iterate recursively,

log(k1) = log(αβ) + α log(k0) + log(z0)

and for date t = 2

log(k2) = log(αβ) + α log(k1) + log(z1)

= log(αβ) + α log(αβ) + α2 log(k0) + α log(z0) + log(z1)
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and for date t = 3

log(k3) = log(αβ) + α log(k2) + log(z2)

= log(αβ) + α log(αβ) + α2 log(αβ) + α3 log(k0) + α2 log(z0) + α log(z1) + log(z2)

and indeed for t ≥ 1,

log(kt) =
t−1X
i=0

αi log(αβ) + αt log(k0) +
t−1X
i=0

αt−1−i log(zi)

It is often useful to break out the initial log(z0) so that

log(kt) =
t−1X
i=0

αi log(αβ) + αt log(k0) + αt−1 log(z0) +
t−1X
i=1

αt−1−i log(zi)

Now suppose (as a very unrealistic example) that the technology shocks were Gaussian white

noise with mean zero and standard deviation σ > 0. Then the distribution of the log capital stock

at date t ≥ 1 conditional only on the date t = 0 information is also normal with mean

E0{log(kt)} = 1− αt

1− α
log(αβ) + αt log(k0) + αt−1 log(z0)

and variance

V0{log(kt)} =
t−1X
i=1

α2(t−1−i)σ2 =
t−2X
i=0

α2iσ2 =
1− α2(t−1)

1− α2
σ2

Notice that these moments condition on the initial given log(z0).

As t → ∞, the moments converge to values independent of the initial conditions. The

more capital intensive the production function, the more slowly this convergence takes place. The

stationary distribution for the log capital stock is Gaussian with moments

E{log(kt)} =
1

1− α
log(αβ)

V{log(kt)} =
1

1− α2
σ2

Notice that the average log capital stock is higher the higher is the capital intensity of the production

function α, and the higher is the time discount factor β. Because the capital intensity also governs

the persistence of the capital stock, the long run variance is higher the higher is α and the higher is
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the innovation variance σ2.

Chris Edmond

24 August 2004
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