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Introduction to the stochastic growth model

Now that we have some tools for modeling uncertainty, we can turn back to economic models. To

begin with, let’s consider the stochastic analogue of the Ramsey-Cass-Koopmans optimal growth

model. The stochastic growth model is sometimes known as the Brock-Mirman model, after

their 1972 paper. Although not especially interesting in its own right, the stochastic growth model

is the point of departure for a lot of applied macroeconomics. The real business cycle model, which

we’ll turn to next, is a slight variation on it.

Consider, then, a social planner that solves:

max
{ct,kt+1}∞t=0

E0

( ∞X
t=0

βtU(ct)

)
, 0 < β < 1

subject to, for each t = 0, 1, ...

ct + kt+1 ≤ ztf (kt) + (1− δ)kt

ct, kt+1 ≥ 0

given k0, z0

and an exogenous stochastic process for the level of technology {Zt}.

A. Event-tree formulation

We can formulate this problem slightly more concretely. Let there be countable dates, t = 0, 1, 2...

and for simplicity let there be a finite number Z of possible states of nature that may be realized

at each date t ≥ 1. Index the states by zt ∈ Z = {1, 2, ..., Z}. A history of realizations zt is a

vector zt = (z0, z1, ..., zt) = (zt−1, zt). The unconditional probability of a history zt being realized

as of date zero is denoted πt(z
t). The initial state z0 is known as of date zero. The expectation in

the planner’s objective function is a sum over random utility outcomes U [ct(zt)] weighted by the

relevant probabilities of particular histories. (In the case of a stochastic process with continuous

support, we would have probability densities for alternative histories and the expectation would be

an integral). Similarly, the choice variables would be sequences of functions of the history, namely

{ct(zt)}∞t=0 and {kt+1(zt)}∞t=0. Notice that capital accumulation kt+1(zt) is a function of the history
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up to date t, because it is chosen conditional on the information up to that point. This means that

the capital that enters the production function at date t is kt(zt−1).

We can now write the planner’s problem as

max
{ct(zt),kt+1(zt)}∞t=0

∞X
t=0

X
zt

βtU [ct(z
t)]πt(z

t), 0 < β < 1

subject to, for each t = 0, 1, ...

ct(z
t) + kt+1(z

t) ≤ ztf [kt(z
t−1)] + (1− δ)kt(z

t−1)

ct(z
t), kt+1(z

t) ≥ 0

given k0, z0

We can characterize solutions to this problem by forming a Lagrangian. Let λt(zt) ≥ 0 denote the
multiplier associated with the date t history zt resource constraint. Then the Lagrangian facing the

planner is

L =
∞X
t=0

X
zt

βtU [ct(z
t)]πt(z

t) +
∞X
t=0

X
zt

λt(z
t){ztf [kt(zt−1)] + (1− δ)kt(z

t−1)− ct(z
t)− kt+1(z

t)}

The interesting first order conditions associated with the problem include

∂L
∂ct(zt)

= 0⇐⇒ βtU 0[ct(zt)]πt(zt) = λt(z
t)

and
∂L

∂kt+1(zt)
= 0⇐⇒ λt(z

t) =
X

zt+1|zt
λt+1(z

t, zt+1){1 + zt+1f
0[kt+1(zt)]− δ}

Notice that capital that is set aside following history zt is worth something in each state zt+1 that

follows. How much it is worth depends in part on the realization of the productivity shock. We can

combine these conditions to write

U 0[ct(zt)]πt(zt) = β
X

zt+1|zt
U 0[ct+1(zt, zt+1)]πt+1(zt, zt+1){1 + zt+1f

0[kt+1(zt)]− δ}
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and dividing both sides by πt(zt) gives

U 0[ct(zt)] = β
X

zt+1|zt
U 0[ct+1(zt, zt+1)]

πt+1(z
t, zt+1)

πt(zt)
{1 + zt+1f

0[kt+1(zt)]− δ}

Notice that
πt+1(z

t, zt+1)

πt(zt)

is the transition probability to state zt+1 given history zt. With stationary Markov shocks, this

simplifies to something like

πt+1(z
t, zt+1)

πt(zt)
= Pr(Zt+1 = zt+1|Zt = zt) ≡ π(zt+1|zt)

We will often use this Markov formulation in our applications. In any case, we can write the

optimality condition as

U 0(ct) = βEt{U 0(ct+1)[1 + zt+1f
0(kt+1)− δ]}

This is sometimes known as a stochastic Euler equation. It equates the marginal cost of consump-

tion foregone to the expected marginal benefit, which depends on the marginal utility of consumption

in the future (which is random) and on the gross return to capital (which is also random).

In addition to the stochastic Euler equation, optimal plans also depend on the resource con-

straint. As with the deterministic model, a transversality condition rules out capital accumulation

paths that grow too quickly.

Given a specification of the law of motion for the exogenous shocks, a simple way to solve

this model is to log-linearize the stochastic Euler equation and the resource constraint around some

point and to then solve the resulting system of stochastic difference equations. The point around

which the log-linearization is often performed is the non-stochastic steady state.

B. Non-stochastic steady state

Suppose that we shut off the shocks by setting zt = z̄ for all t and we then look for a steady state

characterized by kt+1 = kt = k̄. Given the level z̄, the steady state capital stock is found from the

familiar equation

1 = β[1 + z̄f 0(k̄)− δ]
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and then steady state consumption is backed out of the resource constraint

c̄ = z̄f(k̄)− δk̄

C. Log-linear model

Log-linearizing each side of the resource constraint, we have

ct + kt+1 ≈ c̄+ k̄ + c̄ĉt + k̄k̂t+1

and

ztf (kt) + (1− δ)kt ≈ z̄f(k̄) + (1− δ)k̄ + f(k̄)z̄ẑt + [z̄f
0(k̄) + (1− δ)]k̄k̂t

Equating both sides and simplifying

c̄ĉt + k̄k̂t+1 = f(k̄)z̄ẑt + [z̄f
0(k̄) + (1− δ)]k̄k̂t

More generally, we will write this in terms of coefficients that are known functions of the parameters

of the model,

0 = Ak̂t+1 +Bk̂t +Cĉt +Dẑt (1)

for known coefficients A,B,C,D.

Similarly, log-linearizing the left hand side of the stochastic Euler equation

U 0(ct) ≈ U 0(c̄) + U 00(c̄)c̄ĉt

and log-linearizing inside the conditional expectations

βEt{U 0(ct+1)[1 + zt+1f
0(kt+1)− δ]}

≈ βEt{U 0(c̄)[1 + z̄f 0(k̄)− δ] + U 00(c̄)[1 + z̄f 0(k̄)− δ]c̄ĉt+1 + U 0(c̄)f 0(k̄)z̄ẑt+1 + U 0(c̄)z̄f 00(k̄)k̄k̂t+1}

Equating both sides and simplifying

U 00(c̄)c̄
U 0(c̄)

ĉt = Et

½
U 00(c̄)c̄
U 0(c̄)

ĉt+1 + βf 0(k̄)z̄ẑt+1 + βz̄f 00(k̄)k̄k̂t+1
¾

Recall that R(c) = −U 00(c̄)c̄
U 0(c̄) is the Arrow/Pratt measure of relative risk aversion.
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Again, writing this in terms of coefficients that are known functions of the parameters of the

model,

0 = Et
n
Fk̂t+1 + Jĉt+1 +Kĉt + Lẑt+1

o
(2)

for known F, J,K,L.

D. Method of undetermined coefficients

For simplicity, suppose that the exogenous shocks can be written

ẑt+1 = Nẑt + εt+1

where {εt+1} is mean zero white noise. Then we have the log-linear model

0 = Ak̂t+1 +Bk̂t +Cĉt +Dẑt

0 = Et
n
Fk̂t+1 + Jĉt+1 +Kĉt + Lẑt+1

o
ẑt+1 = Nẑt + εt+1

The first equation contains the static resource constraint, the second equation contains the "forward-

looking" Euler equation, while the last is the exogenous law of motion for the productivity shocks.

We can again try to solve this model with the method of undetermined coefficients. To do

so, guess that the solutions are laws of motion

k̂t+1 = Pk̂t +Qẑt

ĉt = Rk̂t + Sẑt

for unknown coefficients P,Q,R, S. If we could solve for these coefficients, then together with the

initial conditions k̂0, ẑ0 and the exogenous law of motion for the shocks, ẑt+1 = Nẑt + εt+1, we

would have a complete solution to the linear model. We would then be in a position to do things

like simulate the model, compute impulse response functions and the like.

So, plug the guesses into the first equation to get

0 = A(Pk̂t +Qẑt) +Bk̂t + C(Rk̂t + Sẑt) +Dẑt

= (AP +B + CR)k̂t + (AQ+D + CS)ẑt
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Since these must hold for all k̂t and ẑt, our first set of restrictions is

0 = AP +B + CR =⇒ R = −C−1(AP +B) (3)

0 = AQ+D + CS =⇒ S = −C−1(AQ+D) (4)

So once we know P,Q we also have solutions for R,S. Clearly, the main difficulty lies in solving for

the law of motion for the endogenous state variable k̂t.

Again, plugging our guesses into the forward-looking equation,

0 = Et
n
F (Pk̂t +Qẑt) + J(Rk̂t+1 + Sẑt+1) +K(Rk̂t + Sẑt) + Lẑt+1

o
= Et

n
FPk̂t + FQẑt + JRk̂t+1 + JSẑt+1 +KRk̂t +KSẑt + Lẑt+1

o
= Et

n
FPk̂t + FQẑt + JRPk̂t + JRQẑt + JSẑt+1 +KRk̂t +KSẑt + Lẑt+1

o

Now taking the conditional expectations and then grouping terms

0 = (FP + JRP +KR)k̂t + (FQ+ JRQ+ JSN +KS + LN)ẑt

Since these must hold for all k̂t and ẑt, our second set of restrictions is

0 = FP + JRP +KR (5)

0 = FQ+ JRQ+ JSN +KS + LN (6)

Now plugging in the result R = −C−1(AP +B) from equation (3) we get a quadratic equation in P

0 = FP − J(C−1(AP +B))P −KC−1(AP +B)

= −JC−1AP 2 + (F − JC−1B −KC−1A)P −KC−1B

Because this model has a saddle-path, this quadratic equation will have one stable and one unstable

root. Since only the stable root will give a solution that satisfies the transversality condition, we

pick that one. Then with P solved for, we know R = −C−1(AP + B). With P and R solved for,

we can get use equation (6) to get

0 = FQ+ JRQ+ JSN +KS + LN
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= FQ+ JRQ− JC−1(AQ+D)N −KC−1(AQ+D) + LN

or

Q =
JC−1DN +KC−1D − LN

F + JR− JC−1AN −KC−1A

which we can compute because we have already solved for P and R and all the other coefficients

were known to begin with. Finally, we can recover the remaining coefficient via S = −C−1(AQ+D).
So, after all that, we have a method for solving for the unknown coefficients. To recap: we

solve for the non-stochastic steady state and construct the known matrices of coefficients. We then

solve a quadratic equation for the critical P . We then back out the associated R so that we have

all the coefficients on the endogenous state variables. Using P and R we solve for the coefficients

on the shocks, Q and S. And then we’re done and ready to do interesting things like simulating the

model by iterating on the linear laws of motion.

Chris Edmond

24 August 2004
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