316-406 ADVANCED MACROECONOMIC TECHNIQUES

Chris Edmond 〈cpedmond@unimelb.edu.au〉

In this course, we will consider two ways to model uncertainty. We will adopt the following notational conventions: random variables will be denoted by capital letters, like X_{t} and Z_{t}, realizations of random variables will be denoted by corresponding little letters, say x_{t} and z_{t}, a stochastic process will be a sequence of random variables, say $\left\{X_{t}\right\}$ and $\left\{Z_{t}\right\}$, and a sample path will be a sequence of realizations, say $\left\{x_{t}\right\}$ and $\left\{z_{t}\right\}$. If a random variable X_{t} has realizations that take values in some continuous set, we will model the process $\left\{X_{t}\right\}$ in terms of stochastic difference equations. If X_{t} has realizations that take values in some discrete set, we will model the process $\left\{X_{t}\right\}$ in terms of a Markov chain.

Stochastic difference equations

We will frequently want to solve a linear stochastic difference equation of the form

$$
\begin{equation*}
X_{t+1}-a X_{t}=b+\sigma Z_{t+1}, \quad t=0,1,2, \ldots \tag{1}
\end{equation*}
$$

given scalars a, b and $\sigma \geq 0$, an initial realization $X_{0}=x_{0}$ and an exogenous stochastic process $\left\{Z_{t}\right\}$. If $\sigma=0$, then we have as a special case the deterministic difference equation $X_{t+1}-a X_{t}=b$. Otherwise, if $\sigma>0$ we have a difference equation that is buffeted by shocks. With this model the primitive stochastic process is $\left\{Z_{t}\right\}$ which induces a new process $\left\{X_{t}\right\}$ according to the rule in (1). In econometrics, a linear stochastic difference equation is sometimes also known as an autoregression and the particular equation in (1) is known as an $\mathrm{AR}(1)$.

We will typically assume that each random variable Z_{t} is an independent standard normal so that

$$
\mathrm{E}\left\{Z_{t}\right\}=0, \quad \mathrm{~V}\left\{Z_{t}\right\}=1, \quad t=0,1,2, \ldots
$$

and

$$
\mathrm{E}\left\{Z_{t} Z_{t+k}\right\}=0, \quad t, k=0,1,2, \ldots
$$

The main reason for assuming normal shocks is that linear combinations of normal random variables are also normal random variables, so if the Z_{t} are normal, the induced random variables X_{t} will also be normal. To see how useful this is, recall that if Z is standard normal, then $X=\mu+\sigma Z$ is also normal with mean μ and standard deviation σ.

So, conditional on $X_{0}=x_{0}$, the random variable X_{1} is given by

$$
X_{1}=b+a x_{0}+\sigma Z_{1}
$$

with mean and variance

$$
\begin{aligned}
\mathrm{E}_{0}\left\{X_{1}\right\} & \equiv \mathrm{E}\left\{X_{1} \mid X_{0}=x_{0}\right\}=b+a x_{0} \\
\mathrm{~V}_{0}\left\{X_{1}\right\} & \equiv \mathrm{V}\left\{X_{1} \mid X_{0}=x_{0}\right\}=\sigma^{2}
\end{aligned}
$$

Another notation for this is that if Z_{1} is standard normal [written $Z_{1} \sim \mathcal{N}(0,1)$], then the conditional distribution for $X_{1} \mid x_{0}$ is also normal with

$$
X_{1} \mid x_{0} \sim \mathcal{N}\left(b+a x_{0}, \sigma^{2}\right)
$$

And more generally,

$$
X_{t+1} \mid x_{t} \sim \mathcal{N}\left(b+a x_{t}, \sigma^{2}\right)
$$

If $|a|<1$, we can solve a linear stochastic difference equation by iterating in the usual manner, namely

$$
X_{1}=b+a^{1} x_{0}+\sigma Z_{1}
$$

and for X_{2}

$$
\begin{aligned}
X_{2} & =b+a^{1} X_{1}+\sigma Z_{2} \\
& =b+a^{1}\left(b+a^{1} x_{0}+\sigma Z_{1}\right)+\sigma Z_{2} \\
& =b+a^{1} b+a^{2} x_{0}+\sigma a^{1} Z_{1}+\sigma Z_{2}
\end{aligned}
$$

and for X_{3}

$$
\begin{aligned}
X_{3} & =b+a^{1} X_{2}+\sigma Z_{3} \\
& =b+a^{1}\left(b+a^{1} b+a^{2} x_{0}+\sigma a^{1} Z_{1}+\sigma Z_{2}\right)+\sigma Z_{3} \\
& =b+a^{1} b+a^{2} b+a^{3} x_{0}+\sigma a^{2} Z_{1}+\sigma a^{1} Z_{2}+\sigma Z_{3}
\end{aligned}
$$

and for general X_{t},

$$
\begin{aligned}
X_{t} & =a^{t} x_{0}+\sum_{i=0}^{t-1} a^{i} b+\sum_{i=0}^{t-1} a^{i} \sigma Z_{t-i} \\
& =a^{t} x_{0}+\frac{1-a^{t}}{1-a} b+\sigma \sum_{i=0}^{t-1} a^{i} Z_{t-i}
\end{aligned}
$$

Since X_{t} is a linear combination of normal random variables, it is also normal with mean

$$
\begin{aligned}
\mathrm{E}_{0}\left\{X_{t}\right\} & =a^{t} x_{0}+\frac{1-a^{t}}{1-a} b+\sigma \mathrm{E}_{0}\left\{\sum_{i=0}^{t-1} a^{i} Z_{t-i}\right\} \\
& =a^{t} x_{0}+\frac{1-a^{t}}{1-a} b+\sigma \sum_{i=0}^{t-1} a^{i} \mathrm{E}_{0}\left\{Z_{t-i}\right\} \\
& =a^{t} x_{0}+\frac{1-a^{t}}{1-a} b
\end{aligned}
$$

and variance

$$
\begin{aligned}
\mathrm{V}_{0}\left\{X_{t}\right\} & =\mathrm{V}_{0}\left\{\sigma \sum_{i=0}^{t-1} a^{i} Z_{t-i}\right\} \\
& =\sigma^{2} \sum_{i=0}^{t-1} a^{2 i} \mathrm{~V}_{0}\left\{Z_{t-i}\right\} \\
& =\frac{1-a^{2 t}}{1-a^{2}} \sigma^{2}
\end{aligned}
$$

(This calculation uses the fact that the shocks Z_{t} are independent and so have zero covariances. Because of this, the variance of the sum is just the sum of the variances).

In short, the distribution of X_{t} is normal with

$$
X_{t} \left\lvert\, x_{0} \sim \mathcal{N}\left(a^{t} x_{0}+\frac{1-a^{t}}{1-a} b, \frac{1-a^{2 t}}{1-a^{2}} \sigma^{2}\right)\right.
$$

This is the distribution of X_{t} conditional only the trivial initial realization.

Stationary distributions

Now recall the usual stability criteria for deterministic difference equations: if $|a|<1$, then a linear deterministic difference equation is globally stable and converges to a unique steady state, a number \bar{x}. With a stochastic difference equation we have no hope of finding a single steady state. Instead, we look for a steady state distribution or stationary distribution of $X_{t} \mid x_{0}$.

Taking the limit as $t \rightarrow \infty$, we see that

$$
\lim _{t \rightarrow \infty} \mathrm{E}_{0}\left\{X_{t}\right\}=\frac{b}{1-a}
$$

and

$$
\lim _{t \rightarrow \infty} \mathrm{~V}_{0}\left\{X_{t}\right\}=\frac{\sigma^{2}}{1-a^{2}}
$$

So as we iterate, the dependence of the distribution on the initial realization x_{0} vanishes and the distribution of X_{t} settles down to a normal distribution with a mean equal to the steady state of the deterministic difference equation (the "non-stochastic steady state") and a variance that depends on both the variance of the shocks σ^{2}, and the persistence of the difference equation as measured by a.

Two special cases are worthy of further comment.

A. IID case

If $a=0$, then the difference equation reduces to

$$
X_{t+1}=b+\sigma Z_{t+1}, \quad t=0,1,2, \ldots
$$

In this case, we say that $\left\{X_{t}\right\}$ is independent and identically distributed (IID). The distribution of $X_{t} \mid x_{0}$ for $t>0$ does not depend on x_{0} and is just

$$
X_{t} \mid x_{0} \sim \mathcal{N}\left(b, \sigma^{2}\right)
$$

If $\left\{X_{t}\right\}$ is IID, then there is no persistence.

B. Random walk case

If $a=1$, then the difference equation reduces to

$$
X_{t+1}-X_{t}=b+\sigma Z_{t+1}, \quad t=0,1,2, \ldots
$$

In this case, we say that $\left\{X_{t}\right\}$ is a random walk. If $b \neq 0$ then it is a random walk with drift. If $\left\{X_{t}\right\}$ is a random walk, its differences have a well-behaved distribution,because the difference
$\Delta X_{t+1}=X_{t+1}-X_{t}$ is IID. So

$$
\begin{aligned}
\mathrm{E}_{t}\left\{\Delta X_{t+1}\right\} & =b \\
\mathrm{~V}_{t}\left\{\Delta X_{t+1}\right\} & =\sigma^{2}
\end{aligned}
$$

If $b \neq 0$, then $\left\{X_{t}\right\}$ trends up or down over time with a constant expected change of $\mathrm{E}_{t}\left\{\Delta X_{t+1}\right\}=b$.
We will see however, that if $\left\{X_{t}\right\}$ is a random walk its levels do not have a well-behaved stationary distribution. Iterating in the usual manner gives

$$
X_{1}=b+x_{0}+\sigma Z_{1}
$$

and for X_{2}

$$
\begin{aligned}
X_{2} & =b+X_{1}+\sigma Z_{2} \\
& =b+\left(b+x_{0}+\sigma Z_{1}\right)+\sigma Z_{2} \\
& =2 b+x_{0}+\sigma Z_{1}+\sigma Z_{2}
\end{aligned}
$$

and for general X_{t},

$$
X_{t}=x_{0}+t b+\sum_{i=0}^{t-1} \sigma Z_{t-i}
$$

So

$$
\mathrm{E}_{0}\left\{X_{t}\right\}=x_{0}+t b
$$

and the limit of $\mathrm{E}_{0}\left\{X_{t}\right\}$ as $t \rightarrow \infty$ diverges to $\pm \infty$ depending on the sign of b. Similarly,

$$
V_{0}\left\{X_{t}\right\}=t \sigma^{2}
$$

so the limit of $\mathrm{V}_{0}\left\{X_{t}\right\}$ as $t \rightarrow \infty$ is $+\infty$.
In short, there is a close relationship between stability for a deterministic difference equation and the existence of a stationary distribution for the associated stochastic difference equation.

Chris Edmond
16 August 2004

