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Dynamic programming and the growth model

Dynamic programming and closely related recursive methods provide an important methodology for

solving a wide variety of economic models. In this note, I use the optimal growth model to illustrate

several important dynamic programming concepts.

Until now, we have been working with something like the following:

Sequence Problem

max
{ct,kt+1}∞t=0

∞X
t=0

βtU(ct)

subject to, for each t = 0, 1, ...

ct + kt+1 ≤ f (kt)

ct, kt+1 ≥ 0

given k0

(Here I write f(kt) for the total supply of goods available at the beginning of period t, i.e.,

this includes un-depreciated capital).

A key feature of this problem is that it involves choosing an infinite sequence of consump-

tion or capital accumulation, one for each date t. It turns out that we can replace the problem of

solving for an infinite sequence with the problem of solving for a single unknown function. This is

only progress because the new problem has an attractive recursive formulation. Under a standard

set of regularity conditions, we can formulate an equivalent problem:

Recursive Problem

V (k) = max
k0

©
U(c) + βV (k0)

ª
subject to

c+ k0 ≤ f(k)

c, k0 ≥ 0
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In this problem, the utility and production functions U and f as well as the discount factor β

are known, but the function V – a value function – is unknown. To understand the economics

of this formulation, suppose that the value function V was known. Then this would just be a two-

period decision problem. With strictly increasing utility, we could substitute the resource constraint

with equality into the objective function and solve

max
0≤k0≤f(k)

©
U [f(k)− k0] + βV (k0)

ª
This determines tomorrow’s capital stock as a function of today’s capital stock. Specifically,

k0 = g(k) ∈ arg max
0≤x≤f(k)

{U [f(k)− x] + βV (x)}

The function g is known as a policy function. Suppose further that V is concave. Then the

objective function is the sum of concave functions and hence is also concave. So the optimal policy

is characterized by the first order condition

U 0(c) = βV 0(x)

That is, at an optimum, we will be trading off the marginal cost U 0(c) of foregone consumption

against a marginal benefit βV 0(x). If V were known, we could then solve for the policy function by

finding, for each k, the appropriate k0 = g(k) such that

U 0[f(k)− g(k)] = βV 0(g(k))

With the policy function g solved for, we can then construct the entire sequence of capital stocks

kt+1 = g(kt) starting with the given initial condition k0. We can also back out consumption, namely

ct = f (kt)−g(kt). Today’s capital stock is all that we need to know in order to choose consumption
optimally. The jargon for this is that today’s capital stock is the only state variable. Finally,

notice that the policy function kt+1 = g(kt) induces a one-dimensional dynamic system. From

our previous analysis of the optimal growth model, it’s clear that this one-dimensional dynamic

system corresponds to the stable arm of the saddle-path. The policy function implies that initial

consumption is c0 = f (k0)− g(k0).

Before turning to methods for solving for the value function, we should first develop some
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intuition for the recursive formulation. To do so, turn back to the sequence problem and call V (k0)

the maximized level of utility associated with optimizing behavior given initial capital k0. That is

V (k0) ≡ max
{kt+1}∞t=0

( ∞X
t=0

βtU [f (kt)− kt+1]

)

The value function depends on the primitive utility and production functions U and f , the discount

factor β and takes as an argument the initial level of the state variable, k0. Now let the optimal

sequence of capital stocks be {k∗t+1}∞t=0. Then

V (k0) =
∞X
t=0

βtU [f (k∗t )− k∗t+1]

But there is nothing special about date zero. We could just have easily defined the value function

to be

V (kt) =
∞X
s=t

βt−sU [f (k∗s)− k∗s+1]

To see the special role the value function plays, we can break the sum into two pieces

V (k0) = U [f (k0)− k∗1] +
∞X
t=1

βtU [f (k∗t )− k∗t+1]

= U [f (k0)− k∗1] + β
∞X
t=1

βt−1U [f (k∗t )− k∗t+1]

= U [f (k0)− k∗1] + βV (k∗1)

So

V (k0) = max
0≤k1≤f(k0)

{U [f (k0)− k1] + βV (k1)}

But the dates t = 0 and t = 1 are arbitrary, so it is very common to simply denote the capital stock

today by k and the capital stock in the next period by k0. Then

V (k) = max
0≤k0≤f(k)

{U [f (k)− k0] + βV (k0)}

This is an example of a Bellman equation. It is one equation in an unknown function V and is

an example of a functional equation. As we have already seen, if we knew the value function,

solving the maximization problem for the policy function k0 = g(k) becomes an essentially trivial

exercise.
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The prime (0) notation emphasizes the recursive and stationary nature of the problem: V (k)

is the value of the capital stock today and V (k0) is the value of the capital stock tomorrow, so βV (k0)

is the value of the capital stock tomorrow in terms of utility today. Given beginning-of-period capital

k, we can optimize by just choosing a single capital stock k0 to take into the next period – since we

know that tomorrow, we will also proceed optimally and get utility value V (k0) for any capital

that we do in fact carry over. Hence, at an optimum, we will be trading off the marginal cost U 0(c)

against a marginal benefit βV 0(k0). [There are two uses of a prime here, one to denote a derivative

and another to denote a next-period-value. Hopefully this won’t cause any confusion].

Later we will discuss methods for solving this functional equation problem. But there are a

number of interesting characteristics of the optimal growth model that can be deduced without an

explicit solution for the value function.

A. First order and envelope conditions

As already discussed, an optimal policy g(k) is characterized by the first order condition

U 0[f(k)− g(k)] = βV 0(g(k))

But this is not much help, since V and hence V 0 are unknown. We can make progress using

the envelope theorem. Specifically, the total derivative of the value function V with respect

to a parameter k is equal to the partial derivative of the objective function with respect to the

parameter evaluated at the optimal policy g(k). [See the "aside" at the end of this note for more

on the envelope theorem]. Using this result,

V 0(k) = U 0[f(k)− g(k)]f 0(k)

(this is sometimes known as the envelope condition). But we actually need the derivative of the

value function evaluated at the point k0 = g(k), namely

V 0(g(k)) = U 0[f(g(k))− g(g(k))]f 0(g(k))

We can now plug this into the first order condition above to get

U 0[f(k)− g(k)] = βU 0[f(g(k))− g(g(k))]f 0(g(k))
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This is just the standard consumption Euler equation. To see this, recall that kt+1 = g(kt) and

ct = f(kt)− g(kt) so we just have

U 0(ct) = βU 0(ct+1)f 0(kt+1)

This is exactly the consumption Euler equation from the sequence problem (remember that I have

been using f(kt) to denote the total supply of goods available at the beginning of period t, including

any un-depreciated capital).

B. Steady state

Interestingly enough, we can solve for the steady state of the model without knowing either the

value function or the policy function. A steady state is defined just as in the sequence problem,

namely k̄ = k0 = k so that k̄ = g(k̄). The steady state capital stock is a fixed point of the policy

function. Steady state consumption is then backed out from the resource constraint, c̄ = f(k̄)− k̄.

To find the steady state capital stock, just solve

1 = βf 0(k̄)

which we can do without knowing either the value function or the policy function.

C. Value function iteration

Now recall the Bellman equation

V (k) = max
0≤k0≤f(k)

{U [f (k)− k0] + βV (k0)}

The right hand side of this equation defines an operator that maps a given function V into a

new function. This operator is often denoted T and we write TV for the new function created by

evaluating T at V . That is,

TV (k) ≡ max
0≤k0≤f(k)

{U [f (k)− k0] + βV (k0)}

The as-yet unknown value function V is in fact a fixed point of the operator equation

V = TV
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Intuitively, you could think of the function V as a vector and the Bellman operator T as something

like a matrix that maps vectors into vectors – this analogy is pretty loose, of course, because a

matrix is a linear operator and the Bellman operator T is not.

We can often use something like the following procedure to solve for the value function:

Step 1. Guess some initial value function, say V0.

Step 2. Use T to construct a new value function V1 = TV0, that is,

V1(k) = TV0(k) ≡ max
0≤k0≤f(k)

{U [f (k)− k0] + βV0(k
0)}

Test to see if V1 is sufficiently close to V0 according to some metric. If so, we have a fixed point and

stop. If not:

Step 3. Use T to construct a new value function V2 = TV1 = TTV0. Test to see if we have a fixed

point. If not, keep iterating on the value functions Vj+1 = TVj = T jV0 for j ≥ 1. Under suitable
regularity conditions, the iterates T jV0 converge to a unique V as j → ∞. That limit is the fixed
point, V = TV , and is independent of the initial guess V0.

To see more concretely how this works, suppose our initial guess is V0(k) = 0 all k. Then

V1(k) = TV0(k) ≡ max
0≤k0≤f(k)

{U [f (k)− k0] + β0} = U [f (k)]

where the last equality follows because if V0(k) = 0, the optimal policy is k0 = 0 all k. But this

means V1(k) = U [f (k)] 6= 0, so we need to keep going. We construct a new iterate

V2(k) = TV1(k) ≡ max
0≤k0≤f(k)

{U [f (k)− k0] + βU [f
¡
k0
¢
]}

and proceed to test whether V2(k) is the same as V1(k). If not, we need to keep going. In practice,

we may need to iterate quite a few times.

This iterative procedure works especially well when the operator T is a contraction map-

ping. [In this context, mapping is a synonym for operator]. A contraction mapping T has the

property that for two functions V,W the distance between TV and TW is less than the distance

between V and W . That is, a contracting operator brings functions closer together. In the context
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of our iterative procedure, if T is a contraction then the iterates T jV0 are getting closer and closer

together as j increases.

Sufficient conditions for the operator T to be a contraction are (i) that the operator is

monotone, so if two functions V,W satisfy V ≤ W , then TV ≤ TW ; and (ii) that the operator

exhibits discounting, so if a > 0 is a constant and V is a function then T (V + a) ≤ TV + βa

for some constant β ∈ (0, 1). The Bellman operator for the growth model is in fact a contraction
mapping.

In practice, value function iteration is easy to implement on a computer. We will discuss how

to do this in the coming lectures.
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D. Aside on the envelope theorem

Consider the choice of maximizing a concave function U(x, θ) by choice of x ∈ X taking as given

some parameter θ ∈ Θ. Associated with this problem is a maximum value function, given by

V (θ) = U(x̂(θ), θ) = max
x∈X

U(x, θ)

where the optimal policy x̂(θ) is

x̂(θ) ∈ argmax
x∈X

U(x, θ)

Since U(x, θ) is concave, this optimal policy is characterized by the first order condition

∂U(x̂(θ), θ)

∂x
= 0

Now consider the marginal effect of a change in θ on the value function. The total derivative of the

value function with respect to the parameter θ is

V 0(θ) =
∂U(x̂(θ), θ)

∂x
x̂0(θ) +

∂U(x̂(θ), θ)

∂θ

But the optimal policy satisfies the first order condition, so we conclude

V 0(θ) =
∂U(x̂(θ), θ)

∂θ

The total derivative of the value function with respect to the parameter θ is equal to the partial

derivative of the utility function with respect to that parameter evaluated at the optimal policy.

This is the essence of the envelope theorem.

Chris Edmond

10 August 2004
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