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Optimal growth model

The key difference between the Solow growth model and the optimal or Ramsey-Cass-Koopmans

growth model is that savings behavior is endogenized. We posit a single representative consumer

that has preferences over an infinite stream of consumption c = {ct}∞t=0 given by a time-separable
utility function of the form

u(c) =
∞X
t=0

βtU(ct)

The number β is known as the time discount factor and is usually assumed to be 0 < β < 1.

The period utility function U(c) is assumed to be strictly increasing and concave. An important

implication of time-separability is that the the marginal utility of consumption at date t

∂u(c)

∂ct
= βtU 0(ct)

is independent of the level of consumption at any other date.

Abstracting from population growth or technological progress (these are easy to reinstate),

the resource constraints facing the representative consumer are for each t

ct + kt+1 = f (kt) + (1− δ)kt, k0 given

If output is not consumed, it is invested. Of course we maintain the usual constant returns and

concavity assumptions for the intensive production function f . The rate of physical depreciation is

constant at 0 < δ < 1.

A. Optimization

Later in this course, we will examine powerful methods for solving dynamic optimization problems.

For now, let’s derive first order conditions using the method of Lagrange multipliers. For each date

t, let µt ≥ 0 denote the multiplier on the resource constraint. Then the Lagrangian is

L =
∞X
t=0

βtU(ct) +
∞X
t=0

µt[f (kt) + (1− δ)kt − ct − kt+1]
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The first order conditions for this problem include

∂L
∂ct

= 0⇐⇒ βtU 0(ct) = µt

and
∂L

∂kt+1
= 0⇐⇒ µt = µt+1[f

0 (kt+1) + 1− δ]

plus the resource constraints themselves. We also need the "transversality condition"

lim
t→∞µtkt+1 = lim

t→∞βtU 0(ct)kt+1 = 0

which requires that asymptotically the shadow value of more capital is zero. This is the natural

infinite-horizon equivalent of the requirement that kT+1 = 0 in a model with a finite horizon T .

Putting together the first order conditions, we have

βU 0(ct+1)
U 0(ct)

=
µt+1
µt

=
1

1 + f 0 (kt+1)− δ

which requires the equality of the marginal rate of substitution between consumption today and

tomorrow with the physical marginal rate of transformation. This optimality condition and ones

like it are often known as consumption Euler equations.

An equilibrium is consumption ct and capital kt that solve the coupled system of non-linear

difference equations

U 0(ct) = βU 0(ct+1)[1 + f 0 (kt+1)− δ] (1)

ct + kt+1 = f (kt) + (1− δ)kt (2)

with two boundary conditions, the given initial condition k0 and the transversality condition.

B. Steady state

The steady state is given by numbers c̄ = ct = ct+1 and k̄ = kt = kt+1. Evidently, these solve

1 = β[1 + f 0
¡
k̄
¢− δ]

c̄+ k̄ = f
¡
k̄
¢
+ (1− δ)k̄
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Notice from the first equation that this means we can solve for the steady state capital stock

independently of consumption (this is an artifact of the time-seperable preferences). Specifically,

f 0
¡
k̄
¢
=
1

β
− 1 + δ = ρ+ δ

where the parameter ρ such that β ≡ 1
1+ρ is known as the time discount rate. Hence at steady

state, the capital stock is such that the net marginal product of capital is equal to the discount rate.

For example, if the production function is Cobb-Douglas, f(k) = Akα, then

k̄ =

µ
αA

ρ+ δ

¶ 1
1−α

Clearly, more patience (lower ρ) tends to increase capital accumulation and so increase k̄. Similarly,

lower depreciation δ or more capital intensity in production (higher α) raise k̄.

Once the steady state capital stock is computed, the associated consumption level can be

backed out from the resource constraint

c̄ = f
¡
k̄
¢− δk̄

The term δk̄ corresponds to steady state investment.

C. Qualitative dynamics

The consumption Euler equation says that consumption will be growing along an optimal path

whenever

ct+1 > ct ⇐⇒ U 0(ct)
U 0(ct+1)

> 1

⇐⇒ β[1 + f 0 (kt+1)− δ] > 1

⇐⇒ f 0 (kt+1) >
1

β
− 1 + δ = ρ+ δ = f 0

¡
k̄
¢

⇐⇒ kt+1 < k̄

Whenever the capital stock will be less than its steady state value, the real interest rate will be

high relative to the time discount rate so the representative consumer will find it optimal to defer

consumption so as to invest in capital accumulation thereby enjoying higher consumption tomorrow

relative to today.
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Similarly,

kt+1 > kt ⇐⇒ f (kt) + (1− δ)kt − ct > kt

⇐⇒ f (kt)− δkt > ct

The capital stock grows whenever there is any output left over once consumption and depreciation

have been taken out.

D. The linear approximation

We can write the dynamic system abstractly in the form

xt+1 = Ψ(xt)

where xt = (ct, kt) and Ψ is the "vector-valued" function implied by the Euler equation and the

resource constraint (1)-(2). Then the linear approximate system is

xt+1 = x̄+Ψ0(x̄)(xt − x̄)

or as a homogeneous equation in log-deviations

x̂t+1 = Ψ
0(x̄)x̂t, x̂t ≡ xt − x̄

x̄
' log

µ
xt
x̄

¶

The term

A = Ψ0(x̄)

is a constant 2-by-2 matrix of coefficients. And after reviewing Note 2b on linear systems of difference

equations, you’ll become completely familiar with the idea that the stability of this linear system

depends on the magnitudes of the eigenvalues of Ψ0(x̄).

Before going any further, it’s worth explicitly log-linearizing the system of equations to in-

vestigate the properties of the coefficient matrix. The log-linear equations can be written (and you

should definitely verify these calculations)

ĉt+1 − βf 00(k̄)k̄
R(c̄) k̂t+1 = ĉt
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and

k̂t+1 =
1

β
k̂t − c̄

k̄
ĉt

where the number

R(c) ≡ −U
00(c)c
U 0(c)

≥ 0

is the so-called Arrow/Pratt measure of relative risk aversion (i.e., a measure of the local concavity

of the utility function).

In Matrix form, these two equations are

 1 −βf 00(k̄)k̄
R(c̄)

0 1


 ĉt+1

k̂t+1

 =
 1 0

− c̄
k̄

1
β


 ĉt

k̂t


and on rearranging1

 ĉt+1

k̂t+1

 =

 1 βf 00(k̄)k̄
R(c̄)

0 1


 1 0

− c̄
k̄

1
β


 ĉt

k̂t


=

 1− βf 00(k̄)c̄
R(c̄) −βf 00(k̄)k̄

R(c̄)
1
β

− c̄
k̄

1
β


 ĉt

k̂t


To determine the stability properties of the model, we need to know the eigenvalues (λ1, λ2) of the

2-by-2 coefficient matrix A, where

A ≡
 1− βf 00(k̄)c̄

R(c̄) −βf 00(k̄)k̄
R(c̄)

1
β

− c̄
k̄

1
β


Two important results in linear algebra are that the trace2 and determinant are respectively the

1Here I use the following result for 2-by-2 matrices (this does not generalize to higher dimensional square matrices).
Suppose that C is invertible with

C =

µ
c11 c12
c21 c22

¶
Then

C−1 =
1

det(C)

µ
c22 −c12
−c21 c11

¶
where det(C) = c11c22 − c12c21.

2The trace of a matrix is the sum of its diagonal elements.
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sum and product of the eigenvalues (λ1, λ2). So

tr(A) = λ1 + λ2 = 1− βf 00(k̄)c̄
R(c̄) +

1

β
> 2

det(A) = λ1 × λ2 =
1

β
> 1

The discriminant of A is positive, specifically

∆ ≡ tr(A)2 − 4 det(A)

=

Ã
1− βf 00(k̄)c̄

R(c̄) + det(A)

!2
− 4 det(A)

=

Ã
1− βf 00(k̄)c̄

R(c̄) − det(A)
!2

> 0

so the eigenvalues are both real. Also, because the product of eigenvalues det(A) is positive, they

must both have the same sign. Since the sum of the eigenvalues tr(A) is also positive, and they are

both of the same sign, both eigenvalues must individually be positive.

We can also establish the magnitudes of the eigenvalues in the following manner. The eigen-

values are the roots of the characteristic polynomial of A

p(λ) = λ2 − tr(A)λ+ det(A) = (λ− λ1)(λ− λ2) = 0

But

p(1) = (1− λ1)(1− λ2) = 1− tr(A) + det(A) = −βf
00(k̄)c̄
R(c̄) < 0

So both eigenvalues are positive but (1− λ1)(1− λ2) < 0. This can only be true if one eigenvalue

is less than one and the other eigenvalue is greater than one, say λ1 > 1 and 0 < λ2 < 1. We

have formally established what we already guessed from the phase diagram: the linear system is

saddle-path unstable.

E. Solving for the transitional dynamics

To summarize, we have a dynamic system that can be written in log-deviations as

 ĉt+1

k̂t+1

 = A

 ĉt

k̂t


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where A is a 2-by-2 matrix of coefficients with one unstable eigenvalue λ1 > 1 and one stable

eigenvalue 0 < λ2 < 1. The solution to a system like this can be written

 ĉt

k̂t

 = Q

 λt1 0

0 λt2

Q−1

 ĉ0

k̂0


where Q is the matrix of eigenvectors with columns corresponding to the eigenvalues and the initial

condition k̂0 is given. We have one explosive eigenvalue and the matrix Q depends only on given

parameters of the model, so this system will blow-up as t→∞ ... unless ...

...unless the endogenous variable ĉ0 "jumps" in just the right way so as to kill the explosive

dynamics. To see how this works write the system out as

 ĉt

k̂t

 =

 q11 q12

q21 q22


 λt1 0

0 λt2

 1

det(Q)

 q22 −q12
−q21 q11


 ĉ0

k̂0


=

 q11λ
t
1 q12λ

t
2

q21λ
t
1 q22λ

t
2


 q22ĉ0 − q12k̂0

−q21ĉ0 + q11k̂0

 1

det(Q)

=

 q11λ
t
1(q22ĉ0 − q12k̂0)− q12λ

t
2(q21ĉ0 − q11k̂0)

q21λ
t
1(q22ĉ0 − q12k̂0)− q22λ

t
2(q21ĉ0 − q11k̂0)

 1

det(Q)

Since λt1 →∞ as t→∞, we have to shut these explosive paths down by setting ĉ0 just right (this is
our one degree of freedom, it is the only endogenous variable not otherwise pinned down). Essentially,

we’re picking consumption so that we do not have an explosive path that violates either implicit

non-negativity constraints on consumption and capital or the transversality condition. Apparently,

setting

ĉ0 =
q12
q22

k̂0

will ensure q22ĉ0 − q12k̂0 = 0 and wipe out the unstable dynamics.

Hence our complete solution is

 ĉt

k̂t

 = 1

det(Q)

 q12(q11 − q21
q12
q22
)

q22(q11 − q21
q12
q22
)

λt2k̂0

In practice this means we can first compute the matrix A, then compute its eigenvalues and eigen-

vectors to get the matrix Q and pick the stable eigenvalue so that we have a bounded solution.
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F. Method of undetermined coefficients

Notice that both solutions can be written as linear difference equations

ĉt+1 = λĉt

k̂t+1 = λk̂t

for some common as yet unknown coefficient λ. This inspires a procedure which doesn’t involve the

hum-drum of the matrix calculations (though it makes use of facts that we only know are true only

because we bothered to do the hard work).

Guess that the solution takes the form of linear difference equations with unknown coefficient.

Then take the system of log-linear equations as before

ĉt+1 − βf 00(k̄)k̄
R(c̄) k̂t+1 − ĉt = 0

k̂t+1 − 1
β
k̂t +

c̄

k̄
ĉt = 0

and plug in the hypothetical solutions to get

λĉt − βf 00(k̄)k̄
R(c̄) λk̂t − ĉt = 0

λk̂t − 1
β
k̂t +

c̄

k̄
ĉt = 0

Eliminating one of the variables (consumption, say) and rearranging gives

"
(λ− 1) k̄

c̄

µ
1

β
− λ

¶
− βf 00(k̄)k̄

R(c̄) λ

#
k̂t = 0

The solution λ has to hold for every possible k̂t. This can only work if the solution is such that

the term in square brackets is zero. That is, λ must be such that

(λ− 1) k̄
c̄

µ
1

β
− λ

¶
− βf 00(k̄)k̄

R(c̄) λ = 0

But on rearranging this, we have the same characteristic polynomial as before

p(λ) = λ2 − tr(A)λ+ det(A) = 0

8



where

tr(A) = 1− βf 00(k̄)c̄
R(c̄) +

1

β

det(A) =
1

β

In short, we can find the unique bounded solution to the log-linear optimal growth model by solving

this quadratic equation and choosing the stable root.

An example with a closed form solution

One particular parametric example of the optimal growth model can be solved in closed form (i.e.,

without any need for approximations). Let the period utility function be U(c) = log(c) and let the

production function be f(k) = Akα with full depreciation, δ = 1. Then the optimal consumption

and capital paths are given by

ct = (1− αβ)Akαt

kt+1 = αβAkαt , k0 given

Clearly these satisfy the resource constraint

ct + kt+1 = (1− αβ)Akαt + αβAkαt = Akαt = f(kt)

They also satisfy the transversality condition

lim
t→∞βtU 0(ct)kt+1 = lim

t→∞βt
1

(1− αβ)Akαt
kt+1

= lim
t→∞βt

αβAkαt
(1− αβ)Akαt

= lim
t→∞βt

αβ

1− αβ

= 0

since 0 < β < 1 so that βt → 0. All that’s left is to check the Euler equation, which can be written

U 0(ct)
U 0(ct+1)

= βf 0(kt+1) ⇐⇒ ct+1
ct

= αβAkα−1t+1

⇐⇒ (1− αβ)Akαt+1
(1− αβ)Akαt

= αβAkα−1t+1
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⇐⇒ 1

kαt
= αβA

1

kt+1

⇐⇒ kt+1 = αβAkαt

as required. So we have indeed a solution (and it is the only one). In this example, the consumption

function

ct = (1− αβ)Akαt

gives an explicit formula for the stable arm of the saddle path. In other contexts, this is sometimes

known as the "policy function". With this formula, we know the unique c0 = (1 − αβ)Akα0

corresponding to the initial capital stock so that economy jumps onto the saddle path.

Chris Edmond

23 July 2004
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