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Linearizing a difference equation

We will frequently want to linearize a difference equation of the form

Tip1 = P(x)

given an initial condition xg.
We can take a first order approximation to the function v at some candidate point . This
gives

L1 =2 P(T) +¢(2) (2 — T)

The right hand side of this expression is a linear equation in x; with slope ¥'(Z) equal to the
derivative of ¢ evaluated at the point . Typically, we will want to linearize around a steady state

Z which also has the property z = 1(Z) so that

Ty ~ T+ (T) (@ — T)

If we treat this approximation as exact, we have an inhomogenous difference equation with constant
coefficients of the form

Try1 = axy + b

where

a = J(z)
b = (1—a)z

And we know that the solution to this difference equation is
zy = (1 —a")ZT + a'zg

Hence if |a| < 1, then a® — 0 as t — oo so that x; — Z. We can conclude from this that the original
non-linear difference equation is locally stable (since we have had to take a local approximation

to the function ) but we cannot use this method to determine global properties of the solution —



in a linear model, local and global stability are the same thing, but that is not true here. A lot of

applied work in economics works by using linear approximations to non-linear models.

Log-linearization, etc.
A popular alternative to linearizing a model is to log-linearize it. To do this, define the log-deviation

of a variable from its steady state value as

N Tt
T; = log (5>

With this notation, a variable is at steady state when its log-deviation is zero.
The popularity of this method comes from the units-free nature of the variables. Log-
deviations are approximate percentage deviations from steady state and the coefficients of log-linear

models are elasticities. I say approximate percentage deviation because

10g<2) :log(l—i—xt__:E) ::Et__m
z z z

This uses the first order approximation

1
log(1 + z) ~log(1+ zp) + T o (z — 20)

around the point zg = 0, so it is an approximation that is valid when the deviation is small. See
"Problem Set Zero" for some discussion of the accuracy of this approximation.

A non-linear difference equation of the form

T = Y(xy)

is log-linearized by making the change of variables z; = Zexp(#;) and then linearizing both sides

with respect to Z; around the point &; = 0. Specifically, write
T exp(Ze1) = Y(T exp(dy))
and now linearize both sides of this equality with respect to &; (around the point Z; = 0) to get

Fexp(0) + 7 exp(0) (141 — 0) 2 (7 exp(0)) + ¥/ (7 exp(0))F exp(0) (i — 0)



Treating this approximation as exact and simplifying gives
T+ Td = Y(T) + ' (T) T3

And recognizing that T = (&) gives
Try1 = P (T)ay

Local stability again crucially depends on the absolute magnitude of ¢'(z), with |¢/(z)| < 1 giving
a locally stable steady state.

Suppose, for example, that we have the Solow difference equation

(1-9)

(1+9)(1+n)

t

Then the log-linear approximation is

. _ 1 _ .
ki1 =Y (k)b = —————[sak® ' +1— 4]k
=R = g .
Calculus for log-linearizations
Similar derivations allow us to do more complicated log-linearizations (this is sometimes known as
the "Campbell calculus"). The following basic rule often helps immensely. Suppose that we have a

differentiable function

yr = f(at, zt)
(more arguments will generalize in an obvious fashion). Then the log-linear approximation is

g:’)t - fx(j’ Z)jit + fz(ja Z)Zzt

which is often written
o fz(:f, Z):f

Cren T f@)

so that the coefficients on the log-deviations &y, Z; are elasticities. A 1% increase in Z; near the

steady-state gives approximately a %100% increase in ;. Here are some further applications

of this rule.



1. (Multiplication and division). Let

yr = f(wg, 2) = 1424

Then
o f(Z,2)T T,2)Z, 2T Tz .
T ) wer f@z T 7zt Tz
= T+ 2
And similarly, if
T
yr = f(w,2t) = —
2t

Then

2. (Addition and subtraction). Let
Yt = f (e, 2t) = 2 + 2
Then

g = [fo(ZT,2)T3 + [.(T,2)Z2% = 122 + 122

= IT+Z%
3. (Implicit functions). An important special case concerns functions of the form
0= g(z¢,yt)
which may implicitly defines y; in terms of x; (or vice-versa). If g,(Z,7) # 0, then
0 = g2(Z,9)Z%¢ + g4(ZT, Y)Yt

and rearranging gives



Examples

1. (Difference equation). Let z441 = f(x¢) so that

A

T = f/(Z)Td
The steady state values on both sides cancel and we are left with

L1 = f(Z) 2
2. (Constant elasticity function). Let z = x° for some coefficient €. Then

5 = eI 1Ty

= €f€§7t

FE
= Zy=e—Iy =T
z

In this case, the elasticity does not depend on the steady state values Z,Z but only on the
constant parameter €.
3. (Consumption Euler equation — an extended example). A consumer’s first order condition is

often
U’ (Ct+1)

L= 000

Ry

This implies the log-linearization

— p—

1=3+U"(ci41) = U'ler) + Reya

But since the log-deviations of constants are zero, this is just

—_—

0=U"(ct1) = U'(cr) + Repa

Moreover, if we have the constant elasticity utility function U(c) = ¢!~ with coefficient o > 0,

then marginal utility is U’(¢) = ¢~ 7 and the log-deviation of marginal utility is

—— U"(e)e. .
Uler) = U’((E)) ¢ = —0é




In this example, the consumption Euler equation becomes

1

Ci41 — Gt = gRtJrl

The coefficient % > 0 measures the sensitivity of consumption growth to real interest rates in
excess of their steady state value. Also, if we write the gross real interest rate R;11 as one

plus the net rate, Ry11 = 1+ 141, then
RRyy1 = 7

But in steady state ¢; = ¢;41 = ¢ and so R = 37} = 1 4+ 7 (according to the original Euler
equation). Hence

Riy1 = (1 - B)fen

. (National income accounting). Let

ct+it =Yt

This implies the log-linearization

CCt + 1 = YUt

which is often written so that the coefficients are shares of GDP, that is

Q| ol
L =i

. (Cobb-Douglas production function). Let
ye = f(ke,ne) = kfni ™, O0O<a<l1

Then
gr = aky + (1 — a)iy
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