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Linearizing a difference equation

We will frequently want to linearize a difference equation of the form

xt+1 = ψ(xt)

given an initial condition x0.

We can take a first order approximation to the function ψ at some candidate point x̃. This

gives

xt+1 ' ψ(x̃) + ψ0(x̃)(xt − x̃)

The right hand side of this expression is a linear equation in xt with slope ψ0(x̃) equal to the

derivative of ψ evaluated at the point x̃. Typically, we will want to linearize around a steady state

x̄ which also has the property x̄ = ψ(x̄) so that

xt+1 ' x̄+ ψ0(x̄)(xt − x̄)

If we treat this approximation as exact, we have an inhomogenous difference equation with constant

coefficients of the form

xt+1 = axt + b

where

a ≡ ψ0(x̄)

b ≡ (1− a)x̄

And we know that the solution to this difference equation is

xt = (1− at)x̄+ atx0

Hence if |a| < 1, then at → 0 as t→∞ so that xt → x̄. We can conclude from this that the original

non-linear difference equation is locally stable (since we have had to take a local approximation

to the function ψ) but we cannot use this method to determine global properties of the solution –
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in a linear model, local and global stability are the same thing, but that is not true here. A lot of

applied work in economics works by using linear approximations to non-linear models.

Log-linearization, etc.

A popular alternative to linearizing a model is to log-linearize it. To do this, define the log-deviation

of a variable from its steady state value as

x̂t = log

µ
xt
x̄

¶

With this notation, a variable is at steady state when its log-deviation is zero.

The popularity of this method comes from the units-free nature of the variables. Log-

deviations are approximate percentage deviations from steady state and the coefficients of log-linear

models are elasticities. I say approximate percentage deviation because

log

µ
xt
x̄

¶
= log

µ
1 +

xt − x̄

x̄

¶
' xt − x̄

x̄

This uses the first order approximation

log(1 + z) ' log(1 + z0) +
1

1 + z0
(z − z0)

around the point z0 = 0, so it is an approximation that is valid when the deviation is small. See

"Problem Set Zero" for some discussion of the accuracy of this approximation.

A non-linear difference equation of the form

xt+1 = ψ(xt)

is log-linearized by making the change of variables xt = x̄ exp(x̂t) and then linearizing both sides

with respect to x̂t around the point x̂t = 0. Specifically, write

x̄ exp(x̂t+1) = ψ(x̄ exp(x̂t))

and now linearize both sides of this equality with respect to x̂t (around the point x̂t = 0 ) to get

x̄ exp(0) + x̄ exp(0)(x̂t+1 − 0) ' ψ(x̄ exp(0)) + ψ0(x̄ exp(0))x̄ exp(0)(x̂t − 0)
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Treating this approximation as exact and simplifying gives

x̄+ x̄x̂t+1 = ψ(x̄) + ψ0(x̄)x̄x̂t

And recognizing that x̄ = ψ(x̄) gives

x̂t+1 = ψ0(x̄)x̂t

Local stability again crucially depends on the absolute magnitude of ψ0(x̄), with
¯̄
ψ0(x̄)

¯̄
< 1 giving

a locally stable steady state.

Suppose, for example, that we have the Solow difference equation

kt+1 = ψ(kt) ≡ s

(1 + g)(1 + n)
kαt +

(1− δ)

(1 + g)(1 + n)
kt

Then the log-linear approximation is

k̂t+1 = ψ0(k̄)k̂t =
1

(1 + g)(1 + n)
[sαk̄α−1 + 1− δ]k̂t

Calculus for log-linearizations

Similar derivations allow us to do more complicated log-linearizations (this is sometimes known as

the "Campbell calculus"). The following basic rule often helps immensely. Suppose that we have a

differentiable function

yt = f(xt, zt)

(more arguments will generalize in an obvious fashion). Then the log-linear approximation is

ȳŷt = fx(x̄, z̄)x̄x̂t + fz(x̄, z̄)z̄ẑt

which is often written

ŷt =
fx(x̄, z̄)x̄

f(x̄, z̄)
x̂t +

fz(x̄, z̄)z̄

f(x̄, z̄)
ẑt

so that the coefficients on the log-deviations x̂t, ẑt are elasticities. A 1% increase in x̂t near the

steady-state gives approximately a fx(x̄,z̄)x̄
f(x̄,z̄) 100% increase in ŷt. Here are some further applications

of this rule.
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1. (Multiplication and division). Let

yt = f(xt, zt) = xtzt

Then

ŷt =
fx(x̄, z̄)x̄

f(x̄, z̄)
x̂t +

fz(x̄, z̄)z̄

f(x̄, z̄)
ẑt =

z̄x̄

x̄z̄
x̂t +

x̄z̄

x̄z̄
ẑt

= x̂t + ẑt

And similarly, if

yt = f(xt, zt) =
xt
zt

Then

ŷt = x̂t − ẑt

2. (Addition and subtraction). Let

yt = f(xt, zt) = xt + zt

Then

ȳŷt = fx(x̄, z̄)x̄x̂t + fz(x̄, z̄)z̄ẑt = 1x̄x̂t + 1z̄ẑt

= x̄x̂t + z̄ẑt

3. (Implicit functions). An important special case concerns functions of the form

0 = g(xt, yt)

which may implicitly defines yt in terms of xt (or vice-versa). If gy(x̄, ȳ) 6= 0, then

0 = gx(x̄, ȳ)x̄x̂t + gy(x̄, ȳ)ȳŷt

and rearranging gives

ŷt = −gx(x̄, ȳ)x̄
gy(x̄, ȳ)ȳ

x̂t
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Examples

1. (Difference equation). Let xt+1 = f(xt) so that

x̄x̂t+1 = f 0(x̄)x̄x̂t

The steady state values on both sides cancel and we are left with

x̂t+1 = f 0(x̄)x̂t

2. (Constant elasticity function). Let z = xε for some coefficient ε. Then

z̄ẑt = εx̄ε−1x̄x̂t

= εx̄εx̂t

=⇒ ẑt = ε
x̄ε

z̄
x̂t = εx̂t

In this case, the elasticity does not depend on the steady state values x̄, z̄ but only on the

constant parameter ε.

3. (Consumption Euler equation – an extended example). A consumer’s first order condition is

often

1 = β
U 0(ct+1)
U 0(ct)

Rt+1

This implies the log-linearization

1̂ = β̂ + dU 0(ct+1)− dU 0(ct) + R̂t+1

But since the log-deviations of constants are zero, this is just

0 = dU 0(ct+1)− dU 0(ct) + R̂t+1

Moreover, if we have the constant elasticity utility function U(c) = c1−σ with coefficient σ > 0,

then marginal utility is U 0(c) = c−σ and the log-deviation of marginal utility is

dU 0(ct) = U 00(c̄)c̄
U 0(c̄)

ĉt = −σĉt
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In this example, the consumption Euler equation becomes

ĉt+1 − ĉt =
1

σ
R̂t+1

The coefficient 1σ > 0 measures the sensitivity of consumption growth to real interest rates in

excess of their steady state value. Also, if we write the gross real interest rate Rt+1 as one

plus the net rate, Rt+1 = 1 + rt+1, then

R̄R̂t+1 = r̄r̂t+1

But in steady state ct = ct+1 = c̄ and so R̄ = β−1 = 1 + r̄ (according to the original Euler

equation). Hence

R̂t+1 = (1− β)r̂t+1

4. (National income accounting). Let

ct + it = yt

This implies the log-linearization

c̄ĉt + ı̄̂ıt = ȳŷt

which is often written so that the coefficients are shares of GDP, that is

c̄

ȳ
ĉt +

ı̄

ȳ
ı̂t = ŷt

5. (Cobb-Douglas production function). Let

yt = f(kt, nt) = kαt n
1−α
t , 0 < α < 1

Then

ŷt = αk̂t + (1− α)n̂t
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