316-406 ADVANCED MACROECONOMIC TECHNIQUES

Chris Edmond 〈cpedmond@unimelb.edu.au〉

Linearizing a difference equation

We will frequently want to linearize a difference equation of the form

$$
x_{t+1}=\psi\left(x_{t}\right)
$$

given an initial condition x_{0}.
We can take a first order approximation to the function ψ at some candidate point \tilde{x}. This gives

$$
x_{t+1} \simeq \psi(\tilde{x})+\psi^{\prime}(\tilde{x})\left(x_{t}-\tilde{x}\right)
$$

The right hand side of this expression is a linear equation in x_{t} with slope $\psi^{\prime}(\tilde{x})$ equal to the derivative of ψ evaluated at the point \tilde{x}. Typically, we will want to linearize around a steady state \bar{x} which also has the property $\bar{x}=\psi(\bar{x})$ so that

$$
x_{t+1} \simeq \bar{x}+\psi^{\prime}(\bar{x})\left(x_{t}-\bar{x}\right)
$$

If we treat this approximation as exact, we have an inhomogenous difference equation with constant coefficients of the form

$$
x_{t+1}=a x_{t}+b
$$

where

$$
\begin{aligned}
a & \equiv \psi^{\prime}(\bar{x}) \\
b & \equiv(1-a) \bar{x}
\end{aligned}
$$

And we know that the solution to this difference equation is

$$
x_{t}=\left(1-a^{t}\right) \bar{x}+a^{t} x_{0}
$$

Hence if $|a|<1$, then $a^{t} \rightarrow 0$ as $t \rightarrow \infty$ so that $x_{t} \rightarrow \bar{x}$. We can conclude from this that the original non-linear difference equation is locally stable (since we have had to take a local approximation to the function ψ) but we cannot use this method to determine global properties of the solution -
in a linear model, local and global stability are the same thing, but that is not true here. A lot of applied work in economics works by using linear approximations to non-linear models.

Log-linearization, etc.

A popular alternative to linearizing a model is to log-linearize it. To do this, define the log-deviation of a variable from its steady state value as

$$
\hat{x}_{t}=\log \left(\frac{x_{t}}{\bar{x}}\right)
$$

With this notation, a variable is at steady state when its log-deviation is zero.
The popularity of this method comes from the units-free nature of the variables. Logdeviations are approximate percentage deviations from steady state and the coefficients of log-linear models are elasticities. I say approximate percentage deviation because

$$
\log \left(\frac{x_{t}}{\bar{x}}\right)=\log \left(1+\frac{x_{t}-\bar{x}}{\bar{x}}\right) \simeq \frac{x_{t}-\bar{x}}{\bar{x}}
$$

This uses the first order approximation

$$
\log (1+z) \simeq \log \left(1+z_{0}\right)+\frac{1}{1+z_{0}}\left(z-z_{0}\right)
$$

around the point $z_{0}=0$, so it is an approximation that is valid when the deviation is small. See "Problem Set Zero" for some discussion of the accuracy of this approximation.

A non-linear difference equation of the form

$$
x_{t+1}=\psi\left(x_{t}\right)
$$

is \log-linearized by making the change of variables $x_{t}=\bar{x} \exp \left(\hat{x}_{t}\right)$ and then linearizing both sides with respect to \hat{x}_{t} around the point $\hat{x}_{t}=0$. Specifically, write

$$
\bar{x} \exp \left(\hat{x}_{t+1}\right)=\psi\left(\bar{x} \exp \left(\hat{x}_{t}\right)\right)
$$

and now linearize both sides of this equality with respect to \hat{x}_{t} (around the point $\hat{x}_{t}=0$) to get

$$
\bar{x} \exp (0)+\bar{x} \exp (0)\left(\hat{x}_{t+1}-0\right) \simeq \psi(\bar{x} \exp (0))+\psi^{\prime}(\bar{x} \exp (0)) \bar{x} \exp (0)\left(\hat{x}_{t}-0\right)
$$

Treating this approximation as exact and simplifying gives

$$
\bar{x}+\bar{x} \hat{x}_{t+1}=\psi(\bar{x})+\psi^{\prime}(\bar{x}) \bar{x} \hat{x}_{t}
$$

And recognizing that $\bar{x}=\psi(\bar{x})$ gives

$$
\hat{x}_{t+1}=\psi^{\prime}(\bar{x}) \hat{x}_{t}
$$

Local stability again crucially depends on the absolute magnitude of $\psi^{\prime}(\bar{x})$, with $\left|\psi^{\prime}(\bar{x})\right|<1$ giving a locally stable steady state.

Suppose, for example, that we have the Solow difference equation

$$
k_{t+1}=\psi\left(k_{t}\right) \equiv \frac{s}{(1+g)(1+n)} k_{t}^{\alpha}+\frac{(1-\delta)}{(1+g)(1+n)} k_{t}
$$

Then the log-linear approximation is

$$
\hat{k}_{t+1}=\psi^{\prime}(\bar{k}) \hat{k}_{t}=\frac{1}{(1+g)(1+n)}\left[s \alpha \bar{k}^{\alpha-1}+1-\delta\right] \hat{k}_{t}
$$

Calculus for log-linearizations

Similar derivations allow us to do more complicated log-linearizations (this is sometimes known as the "Campbell calculus"). The following basic rule often helps immensely. Suppose that we have a differentiable function

$$
y_{t}=f\left(x_{t}, z_{t}\right)
$$

(more arguments will generalize in an obvious fashion). Then the log-linear approximation is

$$
\bar{y} \hat{y}_{t}=f_{x}(\bar{x}, \bar{z}) \bar{x} \hat{x}_{t}+f_{z}(\bar{x}, \bar{z}) \bar{z} \hat{z}_{t}
$$

which is often written

$$
\hat{y}_{t}=\frac{f_{x}(\bar{x}, \bar{z}) \bar{x}}{f(\bar{x}, \bar{z})} \hat{x}_{t}+\frac{f_{z}(\bar{x}, \bar{z}) \bar{z}^{\prime}}{f(\bar{x}, \bar{z})} \hat{z}_{t}
$$

so that the coefficients on the log-deviations \hat{x}_{t}, \hat{z}_{t} are elasticities. A 1% increase in \hat{x}_{t} near the steady-state gives approximately a $\frac{f_{x}(\bar{x}, \bar{z}) \bar{x}}{f(\bar{x}, \bar{z})} 100 \%$ increase in \hat{y}_{t}. Here are some further applications of this rule.

1. (Multiplication and division). Let

$$
y_{t}=f\left(x_{t}, z_{t}\right)=x_{t} z_{t}
$$

Then

$$
\begin{aligned}
\hat{y}_{t}=\frac{f_{x}(\bar{x}, \bar{z}) \bar{x}}{f(\bar{x}, \bar{z})} \hat{x}_{t}+\frac{f_{z}(\bar{x}, \bar{z}) \bar{z}}{f(\bar{x}, \bar{z})} \hat{z}_{t} & =\frac{\bar{z} \bar{x}}{\bar{x} \bar{z}} \hat{x}_{t}+\frac{\bar{x} \bar{z}}{\bar{x} \bar{z}} \hat{z}_{t} \\
& =\hat{x}_{t}+\hat{z}_{t}
\end{aligned}
$$

And similarly, if

$$
y_{t}=f\left(x_{t}, z_{t}\right)=\frac{x_{t}}{z_{t}}
$$

Then

$$
\hat{y}_{t}=\hat{x}_{t}-\hat{z}_{t}
$$

2. (Addition and subtraction). Let

$$
y_{t}=f\left(x_{t}, z_{t}\right)=x_{t}+z_{t}
$$

Then

$$
\begin{aligned}
\bar{y} \hat{y}_{t} & =f_{x}(\bar{x}, \bar{z}) \bar{x} \hat{x}_{t}+f_{z}(\bar{x}, \bar{z}) \bar{z} \hat{z}_{t}=1 \bar{x} \hat{x}_{t}+1 \bar{z} \hat{z}_{t} \\
& =\bar{x} \hat{x}_{t}+\bar{z} \hat{z}_{t}
\end{aligned}
$$

3. (Implicit functions). An important special case concerns functions of the form

$$
0=g\left(x_{t}, y_{t}\right)
$$

which may implicitly defines y_{t} in terms of x_{t} (or vice-versa). If $g_{y}(\bar{x}, \bar{y}) \neq 0$, then

$$
0=g_{x}(\bar{x}, \bar{y}) \bar{x} \hat{x}_{t}+g_{y}(\bar{x}, \bar{y}) \bar{y} \hat{y}_{t}
$$

and rearranging gives

$$
\hat{y}_{t}=-\frac{g_{x}(\bar{x}, \bar{y}) \bar{x}}{g_{y}(\bar{x}, \bar{y}) \bar{y}} \hat{x}_{t}
$$

Examples

1. (Difference equation). Let $x_{t+1}=f\left(x_{t}\right)$ so that

$$
\bar{x} \hat{x}_{t+1}=f^{\prime}(\bar{x}) \bar{x} \hat{x}_{t}
$$

The steady state values on both sides cancel and we are left with

$$
\hat{x}_{t+1}=f^{\prime}(\bar{x}) \hat{x}_{t}
$$

2. (Constant elasticity function). Let $z=x^{\varepsilon}$ for some coefficient ε. Then

$$
\begin{aligned}
\bar{z} \hat{z}_{t} & =\varepsilon \bar{x}^{\varepsilon-1} \bar{x} \hat{x}_{t} \\
& =\varepsilon \bar{x}^{\varepsilon} \hat{x}_{t} \\
& \Longrightarrow \hat{z}_{t}=\varepsilon \frac{\bar{x}^{\varepsilon}}{\bar{z}} \hat{x}_{t}=\varepsilon \hat{x}_{t}
\end{aligned}
$$

In this case, the elasticity does not depend on the steady state values \bar{x}, \bar{z} but only on the constant parameter ε.
3. (Consumption Euler equation - an extended example). A consumer's first order condition is often

$$
1=\beta \frac{U^{\prime}\left(c_{t+1}\right)}{U^{\prime}\left(c_{t}\right)} R_{t+1}
$$

This implies the log-linearization

$$
\hat{1}=\hat{\beta}+\widehat{U^{\prime}\left(c_{t+1}\right)}-\widehat{U^{\prime}\left(c_{t}\right)}+\hat{R}_{t+1}
$$

But since the log-deviations of constants are zero, this is just

$$
0=U^{\prime}\left(\widehat{c}_{t+1}\right)-\widehat{U}^{\prime}\left(c_{t}\right)+\hat{R}_{t+1}
$$

Moreover, if we have the constant elasticity utility function $U(c)=c^{1-\sigma}$ with coefficient $\sigma>0$, then marginal utility is $U^{\prime}(c)=c^{-\sigma}$ and the log-deviation of marginal utility is

$$
\widehat{U^{\prime}\left(c_{t}\right)}=\frac{U^{\prime \prime}(\bar{c}) \bar{c}}{U^{\prime}(\bar{c})} \hat{c}_{t}=-\sigma \hat{c}_{t}
$$

In this example, the consumption Euler equation becomes

$$
\hat{c}_{t+1}-\hat{c}_{t}=\frac{1}{\sigma} \hat{R}_{t+1}
$$

The coefficient $\frac{1}{\sigma}>0$ measures the sensitivity of consumption growth to real interest rates in excess of their steady state value. Also, if we write the gross real interest rate R_{t+1} as one plus the net rate, $R_{t+1}=1+r_{t+1}$, then

$$
\bar{R} \hat{R}_{t+1}=\bar{r} \hat{r}_{t+1}
$$

But in steady state $c_{t}=c_{t+1}=\bar{c}$ and so $\bar{R}=\beta^{-1}=1+\bar{r}$ (according to the original Euler equation). Hence

$$
\hat{R}_{t+1}=(1-\beta) \hat{r}_{t+1}
$$

4. (National income accounting). Let

$$
c_{t}+i_{t}=y_{t}
$$

This implies the log-linearization

$$
\bar{c} \hat{c}_{t}+\vec{\imath}_{t}=\bar{y} \hat{y}_{t}
$$

which is often written so that the coefficients are shares of GDP, that is

$$
\frac{\bar{c}}{\bar{y}} \hat{c}_{t}+\frac{\bar{\imath}}{\bar{y}} \hat{\imath}_{t}=\hat{y}_{t}
$$

5. (Cobb-Douglas production function). Let

$$
y_{t}=f\left(k_{t}, n_{t}\right)=k_{t}^{\alpha} n_{t}^{1-\alpha}, \quad 0<\alpha<1
$$

Then

$$
\hat{y}_{t}=\alpha \hat{k}_{t}+(1-\alpha) \hat{n}_{t}
$$

