Chris Edmond 〈cpedmond@unimelb.edu.au〉

Linear differential equations with constant coefficients

We will frequently want to solve a differential equation of the form

$$
\dot{x}_{t}-a x_{t}=b, \quad t \geq 0
$$

given scalars a, b and an initial condition x_{0}.

A. Homogenous equations

If $b=0$, we have the homogenous equation

$$
\dot{x}_{t}-a x_{t}=0, \quad t \geq 0
$$

Introspection tells us that the solution is a function x_{t} that grows or decays exponentially at rate a (growing if $a>0$, decaying if $a<0$). That is, we expect the solution to be

$$
x_{t}=e^{a t} x_{0}, \quad t \geq 0
$$

And differentiating this with respect to time verifies that it is indeed the solution (there is only one). To see why this is the solution, write the problem as

$$
\frac{d x_{s}}{x_{s}}=a d s, \quad s \geq 0
$$

and integrate both sides over the interval $[0, t)$. This gives

$$
\log \left(x_{t}\right)-\log \left(x_{0}\right)=\int_{0}^{t} \frac{d x_{s}}{x_{s}}=\int_{0}^{t} a d s=a t
$$

And rearranging gives

$$
x_{t}=e^{a t} x_{0}, \quad t \geq 0
$$

This solution diverges to $\pm \infty$ (depending on the sign of x_{0}) if $a>0$ but instead decays to zero if $a<0$. Put differently, the differential equation is unstable if $a>0$ but stable if $a<0$.

B. Inhomogenous equations

Otherwise, if $b \neq 0$, we have to do a bit more work. The trick is to transform the inhomogenous equation into a homogenous equation by a change of variables. Denote by \bar{x} that unique value of x_{t} such that $\dot{x}_{t}=0$. This is the steady state of x_{t}. Clearly,

$$
\bar{x}=-\frac{b}{a}
$$

which is well defined so long as $a \neq 0$. Now introduce a new variable

$$
y_{t} \equiv x_{t}-\bar{x}
$$

(i.e., the difference between the actual and steady state value of x_{t}). Note that this change of variables implies

$$
\begin{aligned}
\dot{y}_{t}=\dot{x}_{t} & =a x_{t}+b \\
& =a\left(y_{t}+\bar{x}\right)+b \\
& =a y_{t}-b+b \\
& =a y_{t}
\end{aligned}
$$

So the new variable obeys a homogenous differential equation and therefore has the solution

$$
y_{t}=e^{a t} y_{0}, \quad t \geq 0
$$

Plugging back in the definition $y_{t} \equiv x_{t}-\bar{x}$ gives

$$
\left(x_{t}-\bar{x}\right)=e^{a t}\left(x_{0}-\bar{x}\right), \quad t \geq 0
$$

which is sometimes re-written

$$
x_{t}=\left(1-e^{a t}\right) \bar{x}+e^{a t} x_{0}, \quad t \geq 0
$$

C. Stability

The stability properties of this solution are easy. If $a<0$, then $e^{a t} \rightarrow 0$ as $t \rightarrow \infty$ so that $x_{t} \rightarrow \bar{x}$ irrespective of the value of the initial condition. That is, if $a<0$, the steady state \bar{x} is globally
stable. If $a>0$, then $e^{a t} \rightarrow+\infty$ as $t \rightarrow \infty$ so that $x_{t} \rightarrow \pm \infty$ depending on the sign of $x_{0}-\bar{x}$, i.e., depending on whether the variable starts above or below its steady state value. If the initial condition happens to be $x_{0}=\bar{x}$, the system stays there irrespective of the value of a. Finally, if in fact $a=0$, then we have the trivial differential equation

$$
\dot{x}_{t}=b, \quad t \geq 0
$$

with general solution

$$
x_{t}=t b+x_{0}, \quad t \geq 0
$$

Linear difference equations

Similarly, if we have the linear difference equation

$$
x_{t+1}-a x_{t}=b, \quad t=0,1,2, \ldots
$$

given scalars a, b and an initial condition x_{0}, then the homogenous solution (when $b=0$) is

$$
x_{t}=a^{t} x_{0}, \quad t=0,1,2, \ldots
$$

You can verify this by iterating as follows

$$
\begin{aligned}
x_{1}= & a^{1} x_{0} \\
x_{2}= & a^{1} x_{1}=a^{2} x_{0} \\
& \vdots \\
x_{t}= & a^{1} x_{t-1}=a^{t} x_{0}
\end{aligned}
$$

The general solution when $b \neq 0$ is

$$
\left(x_{t}-\bar{x}\right)=a^{t}\left(x_{0}-\bar{x}\right), \quad t=0,1,2, \ldots
$$

or

$$
x_{t}=\left(1-a^{t}\right) \bar{x}+a^{t} x_{0}, \quad t=0,1,2, \ldots
$$

But in the discrete time model, the steady state \bar{x} is the solution to $\bar{x}-a \bar{x}=b$ or

$$
\bar{x}=\frac{b}{1-a}
$$

which is well defined so long as $a \neq 1$. If $a=1$, there is no steady state but we have the solution

$$
x_{t}=t b+x_{0}, \quad t=0,1,2, \ldots
$$

In discrete time, stability properties are determined by whether $|a|<1$ or not. If $|a|<1$, then $a^{t} \rightarrow 0$ as $t \rightarrow \infty$ so that $x_{t} \rightarrow \bar{x}$ irrespective of the value of the initial condition. If $|a|>1$, then $a^{t} \rightarrow \pm \infty$ as $t \rightarrow \infty$, so the steady state is not stable. Notice that if $a>0$, the motion of x_{t} is monotonic but if $a<0$, the motion of x_{t} is oscillatory. Again, if the initial condition happens to be $x_{0}=\bar{x}$, the system stays there irrespective of the value of a.

Chris Edmond
23 July 2004

